Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy

  • Vitali Vogel
  • Klaus Langer
  • Sabine Balthasar
  • Peter Schuck
  • Walter Mächtle
  • Winfried Haase
  • Jacomina A. van den Broek
  • Christos Tziatzios
  • Dieter Schubert
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)


Nanoparticles prepared by desolvation and subsequent crosslinking of human serum albumin (HSA) represent promising carriers for drug delivery. We have studied the particle size distribution and the shape of such HSA nanoparticles in aqueous solutions by sedimentation velocity analysis in the analytical ultracentrifuge and by electron microscopy (EM) of negatively stained samples. The sedimentation of the particles was approximated as ideal and with negligible diffusion, and their particle size distribution was characterized by calculating the sedimentation coefficient distribution, g*(s), by applying the computer program SEDFIT. Broad distributions were obtained; the s values within any given preparation might vary by as much as a factor of approximately 5. In addition, depending on the preparation the s 20,w values of the maxima of the distributions varied over a range of 5,000–20,000 S. Since, according to EM, the particles are spherical, the distributions of the sedimentation coefficients could be transformed into distributions of radii, with the corresponding maxima being located between 85 and 160 nm. The ordinate values in the latter distributions can be corrected for Mie light scattering, which yields true relative concentration versus particle radius plots. The broad distributions described could be fractionated into narrow distributions by preparative sucrose density gradient centrifugation. Such isolated fractions may be useful for studying the relationships between the size of the (loaded) HSA carriers and their biological activity. In addition, the procedure described for the analysis of the size distribution of the HSA nanoparticles may be of significant value for the optimization of the method of preparation.

Key words

Serum albumin nanoparticles Particle size distribution Sedimentation velocity analysis Analytical ultracentrifugation Fractionation of nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yuan F (1998) Semin Radiat Oncol 8:164CrossRefGoogle Scholar
  2. 2.
    Barratt GM (2000) Pharm Sci Technol Today 3:163CrossRefGoogle Scholar
  3. 3.
    Kreuter J (1983) Pharm Acta Helv 58:196Google Scholar
  4. 4.
    Scheffel U, Rhodes BA, Natarajan TK, Wagner HN (1972) J Nucl Med 13:498Google Scholar
  5. 5.
    Gallo JM, Hung CT, Perrier DG (1984) Int J Pharm 22:63CrossRefGoogle Scholar
  6. 6.
    Marty JJ, Oppenheimer RC, Speiser P (1978) Pharm Acta Helv 53:17Google Scholar
  7. 7.
    Lin W, Coombes AGA, Davies MC, Davis SS, Illum L (1993) J Drug Targeting 1:237CrossRefGoogle Scholar
  8. 8.
    MacAdam AB, Shafi ZB, James SL, Marriott C, Martin GP (1997) Int J Pharm 151:47CrossRefGoogle Scholar
  9. 9.
    Weber C, Coester C, Kreuter J, Langer K (2000) Int J Pharm 194:91CrossRefGoogle Scholar
  10. 10.
    Weber C, Reiss S, Langer K (2000) Int J Pharm 211:67CrossRefGoogle Scholar
  11. 11.
    Provencher SW (1979) Makromol Chem 180:201CrossRefGoogle Scholar
  12. 12.
    Cantow HJ (1964) Makromol Chem 70:130CrossRefGoogle Scholar
  13. 13.
    Aeijelts Averink JW, Reerink H, Boerma J, Jaspers WJM (1966) J Colloid Interface Sci 21:66CrossRefGoogle Scholar
  14. 14.
    Scholtan W, Lange H (1972) Kolloid Z Z Polym 250:782CrossRefGoogle Scholar
  15. 15.
    Mächtle W (1984) Makromol Chem 195:1025CrossRefGoogle Scholar
  16. 16.
    Müller HG (1989) Colloid Polym Sci 267:1113CrossRefGoogle Scholar
  17. 17.
    Mächtle W (2000) Biophys J 76:1080CrossRefGoogle Scholar
  18. 18.
    Schuck P, Rossmanith P (2000) Biopolymers 54:328CrossRefGoogle Scholar
  19. 19.
    Haugland RP (1996) Handbook of fluorescent probes and research chemicals, 6th edn. Molecular Probes, Eugene, OreGoogle Scholar
  20. 20.
    Fujita H (1962) Mathematical theory of sedimentation analysis. Academic, New YorkGoogle Scholar
  21. 21.
    Stafford WF (1992) Anal Biochem 203:295CrossRefGoogle Scholar
  22. 22.
    Schuck P (2000) Biophys J 78:1606Google Scholar
  23. 23.
    Svedberg T, Pedersen KO (1940) Die Ultrazentrifuge. Steinkopff, DresdenGoogle Scholar
  24. 24.
    Mie G (1908) Ann Phys 25:377CrossRefGoogle Scholar
  25. 25.
    Heller W, Pangonis WJ (1957) J Chem Phys 26:498CrossRefGoogle Scholar
  26. 26.
    Durchschlag H (1986) In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg NewYork, pp 45–128Google Scholar
  27. 27.
    Mächtle W, Fischer H (1969) Angew Makromol Chem 7:147CrossRefGoogle Scholar
  28. 28.
    Means GE, Bender ML (1975) Biochemistry 14:4989CrossRefGoogle Scholar
  29. 29.
    Hayat MA (1986) Basic techniques for transmission electron microscopy. Academic, San Diego, CalifGoogle Scholar
  30. 30.
    Mächtle W (1988) Angew Makromol Chem 162:35CrossRefGoogle Scholar
  31. 31.
    Cölfen H, Pauck T (1997) Colloid Polym Sci 275:175CrossRefGoogle Scholar
  32. 32.
    Kar SR, Kinsbury JS, Lewis MS, Laue TM, Schuck P (2000) Anal Biochem 285:135CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Vitali Vogel
    • 1
  • Klaus Langer
    • 2
  • Sabine Balthasar
    • 2
  • Peter Schuck
    • 3
  • Walter Mächtle
    • 4
  • Winfried Haase
    • 5
  • Jacomina A. van den Broek
    • 1
  • Christos Tziatzios
    • 1
  • Dieter Schubert
    • 1
  1. 1.Institut für BiophysikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Institut für Pharmazeutische TechnologieJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  3. 3.Division of Bioengineering and Physical ScienceORS, National Institutes of HealthBethesdaUSA
  4. 4.KunststofflaboratoriumBASF AGLudwigshafenGermany
  5. 5.Max-Planck-Institut für BiophysikFrankfurt am MainGermany

Personalised recommendations