Studies on the partial specific volume of a poly(ethylene glycol) derivative in different solvent systems

  • Christos Tziatzios
  • Andrei A. Precup
  • Christian H. Weidl
  • Ulrich S. Schubert
  • Peter Schuck
  • Helmut Durchschlag
  • Walter Mächtle
  • Jacomina A. van den Broek
  • Dieter Schubert
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)


The specific volume of charged supramolecular compounds dissolved in organic solvents varies considerably with the solvent system applied; in addition, it is influenced by the presence of salt. In this study we determined the specific volume of an uncharged molecule from the same molar mass range in order to find out whether it shows the same dependencies. To allow application of solvents of widely differing polarity, including water, a poly(ethylene glycol) derivative of molar mass 3,650 g/mol was used as a model system. The primary method applied for determining the specific volume was the buoyant density method, in which sedimentation equilibrium experiments using solvent mixtures of different density are performed and the specific volume is obtained as the reciprocal of that solvent density for which the compound is neutrally buoyant. A second method applied for determination of the specific volume was digital densimetry. We found that the strong influence of the solvent on the specific volume observed with charged compounds is also shown by the uncharged poly(ethylene glycol) derivative, the differences in the specific volume between different solvent systems amounting up to 15%; however, no significant dependence on the presence of salt was observed. We also found that, with the compound studied, a simple rule relating the specific volume and solvent polarity apparently does not exist.

Key words

Partial specific volume Sedimentation equilibrium analysis Organic solvents Uncharged compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lehn J-M (1995) Supramolecular chemistry-concepts and perspectives. VCH, WeinheimGoogle Scholar
  2. 2.
    Lawrence DS, Jiang T, Levett M (1995) Chem Rev 95:2229CrossRefGoogle Scholar
  3. 3. (a)
    Semenov A, Spatz JP, Moeller M, Lehn J-M, Sell B, Schubert D, Weidl CH, Schubert US (1999) Angew Chem 111:2701CrossRefGoogle Scholar
  4. 3. (b)
    Semenov A, Spatz JP, Moeller M, Lehn J-M, Sell B, Schubert D, Weidl CH, Schubert US (1999) Angew Chem Int Ed Engl 38:2547CrossRefGoogle Scholar
  5. 4.
    Schubert D, van den Broek JA, Sell B, Durchschlag H, Maechtle W, Schubert US, Lehn J-M (1997) Prog Colloid Polym Sci 107:166CrossRefGoogle Scholar
  6. 5.
    Schubert D, Tziatzios C, Schuck P, Schubert US (1999) Chem Eur J 5:1377CrossRefGoogle Scholar
  7. 6. (a)
    Schütte M, Kurth DG, Linford MR, Cölfen H, Möhwald H (1998) Angew Chem 110:3058CrossRefGoogle Scholar
  8. 6. (b)
    Schütte M, Kurth DG, Linford MR, Cölfen H, Möhwald H (1998) Angew Chem Int EdEngl 37:2891CrossRefGoogle Scholar
  9. 7.
    Tziatzios C, Durchschlag H, Sell B, van den Broek JA, Maechtle W, Haase W, Lehn J-M, Weidl CH, Eschbaumer C, Schubert D, Schubert US (1999) Prog Colloid Polym Sci 113:114CrossRefGoogle Scholar
  10. 8. (a)
    Newkome GR, Cho TJ, Moorefield CN, Baker GR, Cush R, Russo PS (1999) Angew Chem 111:3899CrossRefGoogle Scholar
  11. 8. (b)
    Newkome GR, Cho TJ, Moorefield CN, Baker GR, Cush R, Russo PS (1999) Angew Chem Int Ed Engl 38:3717CrossRefGoogle Scholar
  12. 9.
    Kurth DG, Lehmann P, Volkmer D, Cölfen H, Koop MJ, Müller A, Du Chesne A (2000) Chem Eur J 6:385CrossRefGoogle Scholar
  13. 10.
    Tziatzios C, Durchschlag H, González JJ, Albertini E, Prados P, de Mendoza J, Eschbaumer C, Schubert US, Schuck P, Schubert D (2000) Polym Prepr Am Chem Soc Div Polym Chem 41:934Google Scholar
  14. 11.
    Eisenberg H (1976) Biological macro-molecules and polyelectrolytes in solution. Clarendon, OxfordGoogle Scholar
  15. 12.
    Eisenberg H (1981) Q Rev Biophys 14:141Google Scholar
  16. 13.
    Durchschlag H (1986) In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 45–128Google Scholar
  17. 14.
    Durchschlag H (2001) In: Hinz H-J (ed) Landolt-Börnstein new series VII/ 2A. Springer, Berlin Heidelberg New York (in press)Google Scholar
  18. 15.
    Durchschlag H (1989) Colloid Polym Sci 267:1139CrossRefGoogle Scholar
  19. 16.
    Shima S, Tziatzios C, Schubert D, Fukada H, Takahashi K, Ermler U, Thauer RK (1998) Eur J Biochem 258:85CrossRefGoogle Scholar
  20. 17.
    Shima S, Thauer RK, Ermler U, Durchschlag H, Tziatzios C, Schubert D (2000) Eur J Biochem 267:6619CrossRefGoogle Scholar
  21. 18.
    Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, New YorkGoogle Scholar
  22. 19.
    Schachman HK (1959) Ultracentrifugation in biochemistry. Academic, New YorkGoogle Scholar
  23. 20.
    Tziatzios C, Durchschlag H, Weidl CH, Eschbaumer C, Maechtle W, Schuck P, Schubert US, Schubert D (2001) ACS symposium series. American Chemical Society, Washington, DC (in press)Google Scholar
  24. 21.
    Schuck P (1994) Prog Colloid Polym Sci 94:1CrossRefGoogle Scholar
  25. 22.
    Schuck P, Legrum B, Passow H, Schubert D (1995) Eur J Biochem 230:806CrossRefGoogle Scholar
  26. 23.
    Schuck P, MacPhee CE, Howlett GJ (1998) Biophys J 74:466CrossRefGoogle Scholar
  27. 24.
    Schuck P (1998) Biophys J 75:1503Google Scholar
  28. 25.
    Schuck P, Demeler B (1999) Biophys J 76:2288Google Scholar
  29. 26.
    Kratky O, Leopold H, Stabinger H (1973) Methods Enzymol 27:98CrossRefGoogle Scholar
  30. 27.
    Durchschlag H, Zipper P (1994) Prog Colloid Polym Sci 94:20CrossRefGoogle Scholar
  31. 28.
    Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:803CrossRefGoogle Scholar
  32. 29.
    Merck & Co (1983) The Merck index, 10th edn. Merck & Co, RaywayGoogle Scholar
  33. 30.
    Weast RC, Selby SM (1967) Handbook of chemistry and physics, 48th edn. CRC, ClevelandGoogle Scholar
  34. 31.
    Mächtle W (1992) In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 147–175Google Scholar
  35. 32.
    Hermans JJ, Ende HA (1963) J Polym Sci Part C Polym Symp 1:161CrossRefGoogle Scholar
  36. 33.
    Mächtle W, Lechner MD (2001) Prog Colloid Polym SciGoogle Scholar
  37. 34.
    Lange H (1964) Kolloid Z Z Polym 199:128CrossRefGoogle Scholar
  38. 35.
    Casassa EF, Eisenberg H (1964) Adv Protein Chem 19:287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Christos Tziatzios
    • 1
  • Andrei A. Precup
    • 2
  • Christian H. Weidl
    • 2
  • Ulrich S. Schubert
    • 2
  • Peter Schuck
    • 3
  • Helmut Durchschlag
    • 4
  • Walter Mächtle
    • 5
  • Jacomina A. van den Broek
    • 1
  • Dieter Schubert
    • 1
  1. 1.Institut für BiophysikJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  2. 2.Laboratory of Macromolecular and Organic ChemistryEindhoven University of TechnologyMD EindhovenThe Netherlands
  3. 3.Division of Bioengineering and Physical ScienceORS, National Institutes of HealthBethesdaUSA
  4. 4.Institut für Biophysik und Physikalische BiochemieUniversität RegensburgRegensburgGermany
  5. 5.KunststofflaboratoriumBASF AGLudwigshafenGermany

Personalised recommendations