Advertisement

Prediction of hydrodynamic parameters of Lumbricus terrestris hemoglobin from small-angle X-ray and electron microscopic structures

  • Peter Zipper
  • Angelika Krebs
  • Helmut Durchschlag
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)

Abstract

The 3.5-MDa extracellular hemoglobin from Lumbricus terrestris is a giant heteromultimeric hexagonal bilayer complex. The consensus model of the complex as derived from small-angle X-ray scattering (SAXS) and a 3D reconstruction obtained from cryoelectron microscopy (EM) were used as bases for the prediction of hydrodynamic parameters (sedimentation coefficient, s, diffusion coefficient, D, and intrinsic viscosity, [η]) by the bead modeling approach implemented in García de la Torre’s program HYDRO. Since the number of beads in the initial EM and SAXS models was too high, appropriate data reduction had to be performed. For this purpose, the original hexagonal structures were mapped into a hexagonal grid to maintain symmetry details. Thereby the initial models, consisting of up to 23,000 beads of equal size and unequal density, were transformed to reduced models of about 500 beads of unequal size but equal density. A comparison of the results obtained for the various models reveals good agreement between predicted and experimental hydrodynamic parameters s and D, provided the models refer to hydrated volumes. In an alternative modeling approach, low-resolution models were generated directly by applying the genetic algorithm (GA) implemented in the program DALAI_GA2 by Chacón et al. to the experimental SAXS curve of L. terrestris hemoglobin and, for the purpose of testing, to the SAXS curve calculated from the initial hydrated EM model. While the resulting GA models are of peculiar shape and certainly without physical relevance, they nevertheless provide perfect fits to the experimental scattering functions and good predictions for s and D.

Key words

Extracellular hemoglobin Bead modeling Hydrodynamic parameters Electron microscopy Small-angle X-ray scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    García de la Torre J, Huertas ML, Carrasco B (2000) Biophys J 78:719–730CrossRefGoogle Scholar
  2. 2.
    Byron O (2000) Methods Enzymol 321:278–304CrossRefGoogle Scholar
  3. 3.
    Durchschlag H, Zipper P, Wilfing R, Purr G (1991) J Appl Crystallogr 24:822–831CrossRefGoogle Scholar
  4. 4.
    Durchschlag H, Zipper P (1996) J Mol Struct 383:223–229CrossRefGoogle Scholar
  5. 5.
    Zipper P, Durchschlag H (1997) Prog Colloid Polym Sci 107:58–71CrossRefGoogle Scholar
  6. 6.
    Zipper P, Durchschlag H (1998) Biochem Soc Trans 26:726–731Google Scholar
  7. 7.
    Zipper P, Durchschlag H (2000) J Appl Crystallogr 33:788–792CrossRefGoogle Scholar
  8. 8.
    Vinogradov SN, Lugo SD, Mainwaring MG, Kapp OH, Crewe AV (1986) Proc Natl Acad Sci USA 83: 8034–8038CrossRefGoogle Scholar
  9. 9.
    Martin PD, Kuchumov AR, Green BN, Oliver RWA, Braswell EH, Wall JS, Vinogradov SN(1996) J Mol Biol 255:154–169CrossRefGoogle Scholar
  10. 10.
    Lamy JN, Green BN, Toulmond A, Wall JS, Weber RE, Vinogradov SN (1996) Chem Rev 96:3113–3124CrossRefGoogle Scholar
  11. 11.
    Zhu H, Ownby DW, Riggs CK, No-lasco NJ, Stoops JK, Riggs AF (1996) J Biol Chem 271:30007–30021CrossRefGoogle Scholar
  12. 12.
    Schatz M, Orlova EV, Dube P, Jäger J, van Heel M (1995) J Struct Biol 114:28–40CrossRefGoogle Scholar
  13. 13.
    Taveau JC, Boisset N, Vinogradov SN, Lamy JN (1999) J Mol Biol 289:1343–1359CrossRefGoogle Scholar
  14. 14.
    Krebs A (1996) Thesis, University of Graz, AustriaGoogle Scholar
  15. 15.
    Krebs A, Zipper P, Vinogradov SN (1996) Biochim Biophys Acta 1297:115–118Google Scholar
  16. 16.
    Krebs A, Lamy J, Vinogradov SN, Zipper P (1998) Biopolymers 45:289–298CrossRefGoogle Scholar
  17. 17.
    Chacón P, Morán F, Díaz JF, Pantos E, Andreu JM(1998) Biophys J 74:2760–2775Google Scholar
  18. 18.
    Chacón P, Díaz JF, Morán F, Andreu JM (2000) J Mol Biol 299:1289–1302CrossRefGoogle Scholar
  19. 19.
    Shlom JM, Vinogradov SN (1973) J Biol Chem 248:7904–7912Google Scholar
  20. 20.
    Glatter O (1982) In: Glatter O, Kratky O (eds) Small angle X-ray scattering. Academic, London, pp 119–165Google Scholar
  21. 21.
    García de la Torre J, Navarro S, López Martínez MC, Díaz FG, López Cascales JJ (1994) Biophys J 67:530–531Google Scholar
  22. 22.
    Carrasco B, García de la Torre J, Zipper P (1999) Eur Biophys J 28:510–515CrossRefGoogle Scholar
  23. 23.
    Zipper P, Durchschlag H (1999) Prog Colloid Polym Sci 113:106–113CrossRefGoogle Scholar
  24. 24.
    David MM, Daniel E (1974) J Mol Biol 87:89–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Peter Zipper
    • 1
  • Angelika Krebs
    • 2
  • Helmut Durchschlag
    • 3
  1. 1.Physical Chemistry, Institute of ChemistryUniversity of GrazGrazAustria
  2. 2.Structural Biology, European Molecular Biology LaboratoryHeidelbergGermany
  3. 3.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations