Advertisement

Modeling of protein hydration with respect to X-ray scattering and hydrodynamics

  • Helmut Durchschlag
  • Peter Zipper
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)

Abstract

Hydration contributions of proteins can be taken into account by advanced modeling techniques starting from the atomic-level structure. Bead modeling may be used both for individual amino acid residues and individual water molecules placed at preferred positions on the protein surface. The exact calculation of the molecular volumes and surfaces of the proteins under analysis is of special importance. Among the approaches tested, the programs MSRoll and SIMS turned out to be particularly effective for calculating “dot surfaces”. The dot surface points and the normal vectors to these points were used for placing water molecules in definite positions and under special constraints on the protein surface (program HYDMODEL). After data reduction of the hydrated protein models to appropriate numbers of beads, hydrodynamic parameters were predicted by means of the program HYDRO. In context with the establishment of hydration models, a variety of input parameters were critically tested: calculation approaches, number of surface dot points, probe radius, volume/density, as well as position and number of bound water molecules, distance selection for water molecules. X-ray scattering properties were calculated on the basis of the number of excess electrons and the radii and coordinates of the beads, hydrodynamic quantities only from the bead radii and coordinates. The examples studied comprise the enzymes citrate synthase and catalase. The approaches applied may be used to predict structural and hydrodynamic properties of hydrated proteins more realistically.

Key words

Protein hydration 3D structure Bead modeling Hydrodynamics Small-angle X-ray scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumosinski TF, Pessen H (1985) Methods Enzymol 117:154–182CrossRefGoogle Scholar
  2. 2.
    García de la Torre J (1989) In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, pp 3–31Google Scholar
  3. 3.
    Harding SE (1989) In: Harding SE, Rowe AJ (eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge, pp 32–56Google Scholar
  4. 4.
    Harding SE (1995) Biophys Chem 55:69–93CrossRefGoogle Scholar
  5. 5.
    Byron O (2000) Methods Enzymol 321:278–304CrossRefGoogle Scholar
  6. 6.
    García de la Torre J, Huertas ML, Carrasco B (2000) Biophys J 78:719–730Google Scholar
  7. 7.
    Ashton AW, Boehm MK, Gallimore JR, Pepys MB, Perkins SJ (1997) J Mol Biol 272:408–422CrossRefGoogle Scholar
  8. 8.
    Byron O (1997) Biophys J 72:408–415CrossRefGoogle Scholar
  9. 9.
    (a) Spotorno B, Piccinini L, Tassara G, Ruggiero C, Nardini M, Molina F, Rocco M(1997) Eur Biophys J 25:373–384CrossRefGoogle Scholar
  10. 9.
    (b)(1997) Eur Biophys J erratum 26:417Google Scholar
  11. 10.
    Zipper P, Durchschlag H (1997) Prog Colloid Polym Sci 107:58–71CrossRefGoogle Scholar
  12. 11.
    Zipper P, Durchschlag H (1998) Biochem Soc Trans 26:726–731Google Scholar
  13. 12.
    Zipper P, Durchschlag H (2000) J Appl Crystallogr 33:788–792CrossRefGoogle Scholar
  14. 13.
    Durchschlag H, Zipper P (2001) Prog Colloid Polym Sci: 119:121–130CrossRefGoogle Scholar
  15. 14.
    Zipper P, Krebs A, Durchschlag H (2001) Prog Colloid Polym Sci: 119: 141–148CrossRefGoogle Scholar
  16. 15.
    Cooper A, Harding SE (eds) (2001) Biophys Chem (in press)Google Scholar
  17. 16.
    Durchschlag H, Zipper P (2001) Biophys Chem (in press)Google Scholar
  18. 17.
    Bairoch A, Apweiler R (2000) Nucleic Acids Res 28:45–48CrossRefGoogle Scholar
  19. 18.
    Kuntz ID (1971) J Am Chem Soc 93:514–516CrossRefGoogle Scholar
  20. 19.
    Durchschlag H, Zipper P (1996) J Mol Struct 383:223–229CrossRefGoogle Scholar
  21. 20.
    Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:1112–1124CrossRefGoogle Scholar
  22. 21.
    Durchschlag H, Zipper P (1998) Biochem Soc Trans 26:731–736Google Scholar
  23. 22.
    Durchschlag H, Zipper P (1999) Prog Colloid Polym Sci 113:87–105CrossRefGoogle Scholar
  24. 23.
    Durchschlag H, Zipper P, Purr G, Jaenicke R (1996) Colloid Polym Sci 274:117–137CrossRefGoogle Scholar
  25. 24.
    Chacón P, Díaz JF, Morán F, Andreu JM (2000) J Mol Biol 299:1289–1302CrossRefGoogle Scholar
  26. 25.
    Kumosinski TF, Pessen H (1982) Arch Biochem Biophys 219:89–100CrossRefGoogle Scholar
  27. 26.
    Durchschlag H, Zipper P (1997) Prog Colloid Polym Sci 107:43–57CrossRefGoogle Scholar
  28. 27.
    Remington S, Wiegand G, Huber R (1982) J Mol Biol 158:111–152CrossRefGoogle Scholar
  29. 28.
    Wiegand G, Remington S, Deisenhofer J, Huber R (1984) J Mol Biol 174:205–219CrossRefGoogle Scholar
  30. 29.
    Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Acta Crystallogr Sect D 54:1078–1084CrossRefGoogle Scholar
  31. 30.
    Durchschlag H, Zipper P, Wilfing R, Purr G (1991) J Appl Crystallogr 24:822–831CrossRefGoogle Scholar
  32. 31.
    Wu J-Y, Yang JT (1970) J Biol Chem 245:212–218Google Scholar
  33. 32.
    Singh M, Brooks GC, Srere PA (1970) J Biol Chem 245:4636–4640Google Scholar
  34. 33.
    Fita I, Murthy MRN, Rossmann MG, Silva AM (1986) Acta Crystallogr Sect B 42:497–515CrossRefGoogle Scholar
  35. 34.
    Malmon AG (1957) Biochim Biophys Acta 26:233–240CrossRefGoogle Scholar
  36. 35.
    Lee JC, Timasheff SN (1974) Biochemistry 13:257–265CrossRefGoogle Scholar
  37. 36.
    Sumner JB, Gralén N (1938) J Biol Chem 125:33–36Google Scholar
  38. 37.
    Tanford C, Lovrien R (1962) J Am Chem Soc 84:1892–1896CrossRefGoogle Scholar
  39. 38.
    Sumner JB, Dounce AL, Frampton VL (1940) J Biol Chem136:343–356Google Scholar
  40. 39.
    Connolly ML (1983) Science 221:709–713CrossRefGoogle Scholar
  41. 40.
    Connolly ML (1985) J Am Chem Soc 107:1118–1124CrossRefGoogle Scholar
  42. 41.
    Connolly ML (1993) J Mol Graphics 11:139–141CrossRefGoogle Scholar
  43. 42.
    Vorobjev YN, Herman J (1997) Biophys J 73:722–732Google Scholar
  44. 43.
    Perkins SJ (1986) Eur J Biochem 157:169–180CrossRefGoogle Scholar
  45. 44.
    Gerstein M, Chothia C (1996) Proc Natl Acad Sci USA 93:10167–10172CrossRefGoogle Scholar
  46. 45.
    Svergun DI, Richard S, Koch MHJ, Sayers Z, Kuprin S, Zaccai G (1998) Proc Natl Acad Sci USA 95:2267–2272CrossRefGoogle Scholar
  47. 46.
    Ebel C, Eisenberg H, Ghirlando R (2000) Biophys J 78:385–393Google Scholar
  48. 47.
    García de la Torre J, Navarro S, López Martínez MC, Díaz FG, López Cascales JJ (1994) Biophys J 67:530–531Google Scholar
  49. 48.
    Carrasco B, García de la Torre J, Zipper P (1999) Eur Biophys J 28:510–515CrossRefGoogle Scholar
  50. 49.
    Zipper P, Durchschlag H (1999) Prog Colloid Polym Sci 113:106–113CrossRefGoogle Scholar
  51. 50.
    Glatter O, Kratky O (eds) (1982) Small-angle X-ray scattering. Academic, LondonGoogle Scholar
  52. 51.
    Zipper P, Durchschlag H (2001) Physica A (in press)Google Scholar
  53. 52.
    Sayle RA, Milner-White EJ (1995) Trends Biochem Sci20:374–376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Helmut Durchschlag
    • 1
  • Peter Zipper
    • 2
  1. 1.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany
  2. 2.Physical Chemistry Institute of ChemistryUniversity of GrazGrazAustria

Personalised recommendations