Advertisement

Correlations between crystallographic, small-angle scattering and hydrodynamic data of biopolymers

  • Helmut Durchschlag
  • Peter Zipper
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)

Abstract

Whole-body and multi-body approaches as well as empirical relations allow the establishment of manifold correlations between structural and hydrodynamic parameters of biopolymers. Hydrodynamic properties can be predicted reliably from crystallography, small-angle X-ray scattering or other structural data. The inverse procedure, the prediction of structural parameters typical of X-ray studies, can also be performed starting from the results of hydrodynamics. Predictions based on crystal and some other data, however, are only feasible if reliable values or qualified assumptions for polymer hydration are taken into account. Comparisons between solution scattering and crystallographic data for proteins reveal obvious differences which may be ascribed mainly to differences in hydration and surface roughness.

Key words

Biopolymers Parameter predictions Crystallography Small-angle X-ray scattering Hydrodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumosinski TF, Pessen H (1982) Arch Biochem Biophys 219:89–100CrossRefGoogle Scholar
  2. 2.
    Kumosinski TF, Pessen H (1985) Methods Enzymol 117:154–182CrossRefGoogle Scholar
  3. 3.
    Pessen H, Kumosinski TF (1993) In: Baianu IC, Pessen H, Kumosinski TF (eds) Physical chemistry of food processes, vol 2. Advanced techniques, structures, and applications. Van Nostrand Reinhold, New York, pp 274–306Google Scholar
  4. 4.
    Müller JJ, Damaschun H, Damaschun G, Gast K, Plietz P, Zirwer D (1984) Stud Biophys 102:171–175Google Scholar
  5. 5.
    Durchschlag H, Zipper P, Purr G, Jaenicke R (1996) Colloid Polym Sci 274:117–137CrossRefGoogle Scholar
  6. 6.
    Durchschlag H, Zipper P (1996) J Mol Struct 383:223–229CrossRefGoogle Scholar
  7. 7.
    Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:1112–1124CrossRefGoogle Scholar
  8. 8.
    Durchschlag H, Zipper P (1997) Prog Colloid Polym Sci 107:43–57CrossRefGoogle Scholar
  9. 9.
    Durchschlag H, Zipper P (1998) Biochem Soc Trans 26:731–736Google Scholar
  10. 10.
    Durchschlag H, Zipper P (1999) Prog Colloid Polym Sci 113:87–105CrossRefGoogle Scholar
  11. 11.
    Harding SE (1989) In: Harding SE, Rowe AJ(eds) Dynamic properties of biomolecular assemblies. Royal Society of Chemistry, Cambridge UK, pp 32–56Google Scholar
  12. 12.
    Harding SE (1995) Biophys Chem 55:69–93CrossRefGoogle Scholar
  13. 13.
    Harding SE, Horton JC, Jones S, Thornton JM, Winzor DJ (1999) Biophys J 76:2432–2438Google Scholar
  14. 14.
    García de la Torre J, Navarro S, López Martínez MC, Díaz FG, López Cascales JJ (1994) Biophys J 67:530–531Google Scholar
  15. 15.
    Carrasco B, García de la Torre J (1999) Biophys J 75:3044–3057Google Scholar
  16. 16.
    Carrasco B, García de la Torre J, Zipper P (1999) Eur Biophys J 28:510–515CrossRefGoogle Scholar
  17. 17.
    García de la Torre J, Huertas ML, Carrasco B (2000) Biophys J 78:719–730Google Scholar
  18. 18.
    Beavil AJ, Young RJ, Sutton BJ, Perkins SJ(1995) Biochemistry 34:14449–14461CrossRefGoogle Scholar
  19. 19.
    Perkins SJ, Ashton AW, Boehm MK, Chamberlain D (1998) Int J Biol Macromol 22:1–16CrossRefGoogle Scholar
  20. 20.
    Byron O (1995) Prog Colloid Polym Sci 99:82–86CrossRefGoogle Scholar
  21. 21.
    Byron O (1997) Biophys J 72:408–415Google Scholar
  22. 22.
    Byron O (2000) Methods Enzymol 321:278–304CrossRefGoogle Scholar
  23. 23.
    Hellweg T, Eimer W, Krahn E, Schneider K, Müller A (1997) Biochim Biophys Acta 1337:311–318Google Scholar
  24. 24.
    (a) Spotorno B, Piccinini L, Tassara G, Ruggiero C, Nardini M, Molina F, Rocco M(1997) Eur Biophys J 25:373–384CrossRefGoogle Scholar
  25. 24.
    (b) (1977) Eur Biophys J erratum 26:417Google Scholar
  26. 25.
    Zipper P, Durchschlag H (1997) Prog Colloid Polym Sci107:58–71CrossRefGoogle Scholar
  27. 26.
    Zipper P, Durchschlag H (1998) Biochem Soc Trans 26:726–731Google Scholar
  28. 27.
    Zipper P, Durchschlag H (1999) Prog Colloid Polym Sci 113:106–113CrossRefGoogle Scholar
  29. 28.
    Zipper P, Durchschlag H (2000) J Appl Crystallogr 33:788–792CrossRefGoogle Scholar
  30. 29.
    Chacón P, Morán F, Díaz JF, Pantos E, Andreu JM (1998) Biophys J 74:2760–2775Google Scholar
  31. 30.
    Chacón P, Díaz JF, Morán F, Andreu JM (2000) J Mol Biol 299:1289–1302CrossRefGoogle Scholar
  32. 31.
    Banachowicz E, Gapiński J, Patkowski A (2000) Biophys J 78:70–78Google Scholar
  33. 32.
    Bairoch A, Apweiler R (2000) Nucleic Acids Res 28:45–48CrossRefGoogle Scholar
  34. 33.
    Durchschlag H (1986) In: Hinz H-J (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Berlin Heidelberg New York, pp 45–128Google Scholar
  35. 34.
    Durchschlag H (2001) In: Hinz H-J (ed) Landolt-Börnstein new series VII/2A. Springer, Berlin Heidelberg New York (in press)Google Scholar
  36. 35.
    Durchschlag H, Zipper P (1994) Prog Colloid Polym Sci 94:20–39CrossRefGoogle Scholar
  37. 36.
    Durchschlag H, Zipper P (1997) J Appl Crystallogr 30:803–807CrossRefGoogle Scholar
  38. 37.
    Teller DC (1976) Nature 260:729–731CrossRefGoogle Scholar
  39. 38.
    Durchschlag H, Zipper P (2001) Biophys Chem (in press)Google Scholar
  40. 39.
    Durchschlag H, Zipper P (2001) Prog Colloid Polym Sci 119:131–140CrossRefGoogle Scholar
  41. 40.
    Perrin F (1934) J Phys Radium Série VII 5:497–511Google Scholar
  42. 41.
    Perrin F (1936) J Phys Radium Série VII 7:1–11Google Scholar
  43. 42.
    Sayle RA, Milner-White EJ (1995) Trends Biochem Sci 20:374–376CrossRefGoogle Scholar
  44. 43.
    Durchschlag H, Zipper P, Wilfing R, Purr G (1991) J Appl Crystallogr 24:822–831CrossRefGoogle Scholar
  45. 44.
    Zipper P, Krebs A, Durchschlag H (2001) Prog Colloid Polym Sci 119: 141–148CrossRefGoogle Scholar
  46. 45.
    Ashton AW, Boehm MK, Gallimore JR, Pepys MB, Perkins SJ (1997) J Mol Biol 272:408–422CrossRefGoogle Scholar
  47. 46.
    Tanford C (1961) Physical chemistry of macromolecules. Wiley, New YorkGoogle Scholar
  48. 47.
    Cantor CR, Schimmel PR (1980) Biophysical chemistry. Freeman, San FranciscoGoogle Scholar
  49. 48.
    Van Holde KE, Johnson WC, Ho PS (1998) Principles of physical biochemistry. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  50. 49.
    Fita I, Murthy MRN, Rossmann MG, Silva AM (1986) Acta Crystallogr Sect B 42: 497–515CrossRefGoogle Scholar
  51. 50.
    Sussman JL, Lin D, Jiang J, Manning NO, Prilusky J, Ritter O, Abola EE (1998) Acta Crystallogr Sect D 54:1078–1084CrossRefGoogle Scholar
  52. 51.
    Malmon AG(1957) Biochim Biophys Acta 26:233–240Google Scholar
  53. 52.
    Sumner JB, Gralén N (1938) J Biol Chem 125:33–36Google Scholar
  54. 53.
    Tanford C, Lovrien R (1962) J Am Chem Soc 84:1892–1896CrossRefGoogle Scholar
  55. 54.
    Tyn MT, Gusek TW (1990) Biotechnol Bioeng 35:327–338CrossRefGoogle Scholar
  56. 55.
    Vorobjev YN, Herman J (1997) Biophys J 73:722–732CrossRefGoogle Scholar
  57. 56.
    García de la Torre J, Carrasco B (1999) Prog Colloid Polym Sci 113:81–86CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Helmut Durchschlag
    • 1
  • Peter Zipper
    • 2
  1. 1.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany
  2. 2.Physical Chemistry, Institute of ChemistryUniversity of GrazHeinrichstrasseGrazAustria

Personalised recommendations