The sedimentation behaviour of gels — the generalised Lamm’s differential equation

  • D. Kisters
  • A. Straatmann
  • W. Borchard
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)


Lamm’s differential equation for polymer solutions is a well-known tool to describe the time-dependent change of the polymer concentration as a function of diffusion and sedimentation of the polymer component in a centrifugal field. Based on the phenomenological equations, which describe the flux of the polymer component as the sum of the products of the phenomenological coefficients and the generalised specific forces, this was derived. The phenomenological definition of the flux is valid for polymer solutions as well as for gels. It is shown that the phenomenological equation in the case of gels leads to a “generalised Lamm differential equation”, which describes the change of the concentration with respect to the time as a function of the diffusion, the sedimentation and a so-called “elastically active coefficient”. All changes between the sedimentation behaviour of a polymer in solution and a polymer in a swollen elastic network can be attributed to this coefficient. Ultracentrifugal measurements of gelatin gels (physical networks) yield the ratio of the diffusion coefficient and the sedimentation coefficient of the polymer at different overall concentrations of the gels. From the literature values of non-cross-linked and cross-linked polystyrene in chlorobenzene the ratio of the mobilities and sedimentation coefficients are calculated and discussed.

Key words

Gelatin Polystyrene Sedimentation Lamm’s differential equation for gels Elastically active coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fujita H (1962) Mathematical theory of sedimentation analysis. Academic, New YorkGoogle Scholar
  2. 2.
    Fujita H (1975) Foundations of ultracentrifugal analysis. Wiley, New YorkGoogle Scholar
  3. 3.
    Svedberg T, Pedersen KO (1949) In: Ostwald W (ed) Handbuch der Kolloidwissenschaft. Steinkopff, Dresden, p 5Google Scholar
  4. 4.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  5. 5.
    Haase R (1956) Thermodynamik der Mischphasen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Rehage G (1959) Symposium über Makromoleküle, Wiesbaden, II A15Google Scholar
  7. 7.
    Rehage G, Ernst O (1964) DECHEMA Monogr 49:157–179Google Scholar
  8. 8.
    Rehage G, Ernst O (1964) Kolloid Z Z Polym 197:64–70CrossRefGoogle Scholar
  9. 9.
    Haase R (1963) Thermodynamik der irreversiblen Prozesse. Steinkopf, DarmstadtGoogle Scholar
  10. 10.
    Kisters D (2001) Doctoral thesis. DuisburgGoogle Scholar
  11. 11.
    Borchard W (1991) Prog Colloid Polym Sci 86:84–91CrossRefGoogle Scholar
  12. 12.
    Borchard W, Cölfen H, Kisters D, Straatmann A (2001) Prog Colloid Polym Sci 119:101–112CrossRefGoogle Scholar
  13. 13.
    Johnson P, Metcalfe JC (1967) Eur Polym J 3:423–447CrossRefGoogle Scholar
  14. 14.
    Ernst O (1962) Doctoral thesis. AachenGoogle Scholar
  15. 15.
    Rehage G, Meys H (1958): J Polym Sci 30:271CrossRefGoogle Scholar
  16. 16.
    Palmen HJ (1960) Diploma thesis. AachenGoogle Scholar
  17. 17.
    Rehage G (1960) Habilitation thesis. AachenGoogle Scholar
  18. 18.
    Fuhrmann J, Rehage G (1969) Z Phys Chem NF 67:291Google Scholar
  19. 19.
    Fuhrmann J, Driemeyer M, Rehage G (1970) Ber Bunsenges Phys Chem 74:842Google Scholar
  20. 20.
    Rehage G (1964) Kolloid Z Z Polym 194:16CrossRefGoogle Scholar
  21. 21.
    Rehage G (1964) Kolloid Z Z Polym 196:97CrossRefGoogle Scholar
  22. 22.
    Flory PJ (1942) J Chem Phys 10:51CrossRefGoogle Scholar
  23. 23.
    Huggins ML (1943) Ann NY Acad Sci 44:431CrossRefGoogle Scholar
  24. 24.
    Staverman AJ, van Santen JM (1941) Recl Trav Chim Pays-Bas 60:76Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • D. Kisters
    • 1
  • A. Straatmann
    • 2
  • W. Borchard
    • 2
  1. 1.DGF Stoess AGEberbachGermany
  2. 2.Institut für Physikalische und Theoretische Chemie der Gerhard-Mercator-Universität DuisburgDuisburgGermany

Personalised recommendations