Self-association of phosphorylase kinase from rabbit skeletal muscle in the presence of natural osmolyte, trimethylamine N-oxide

  • Natalia A. Chebotareva
  • Iraida E. Andreeva
  • Valentina F. Makeeva
  • Boris I. Kurganov
  • Nataliya B. Livanova
  • Stephen E. Harding
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)


The effect of trimethylamine N-oxide (TMAO) on self-association of phosphorylase kinase (PhK) has been studied by analytical ultracentrifugation and turbidimetry in 40 mM N-(2-hydroxyethyl)piper-azine-N′-ethanesulfonic acid buffer, pH 6.8 and 8.2. PhK is a hexade-camer (αβγδ)4 with a molecular mass of 1,300 kDa. The oligomeric state of the native enzyme is dependent on the protein concentration and the concentrations of Ca2+ and Mg2+, which are essential for the enzymatic activity. In the absence of Ca2+ and Mg2+ the enzyme exists in the monomeric and dimeric forms (with s 20,w = 23 and 36.5 S); however, the addition of 0.1 mM Ca2+ and 10 mM Mg2+ results in the appearance of associates of higher order. TMAO (0.6–1.0 M) was found to favor greatly self-association of PhK. In the presence of TMAO, apart from the association products, consisting of a rather low number (n) of PhK molecules (n = 2, 3, 4,...), two distinct rapidly moving boundaries with S 20,w = 189 and 385 S are registered on the sedimentation profiles. These boundaries correspond to 24-mers and 70-mers (the molecular masses of associates were estimated using the Mark-Houwink—Kuhn—Sakurada equation, assuming a spherical form. The kinetics of TMAO-induced association of PhK was monitored by following the increase in the turbidity of the enzyme solution at varying concentrations of the protein and TMAO. The initial rate of the association is proportional to the enzyme concentration squared, suggesting that the initial step of PhK association is the stage of dimerization.

Key words

Analytical ultracentrifugarion Self-association Phosphorylase kinase Trimethylamine N-oxide Crowding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krebs EG, Graves DJ, Fisher EH (1959) J Biol Chem 234:2867–2873Google Scholar
  2. 2.
    Brusharia RJ, Walsh DA (1999) Frontiers Biosci 4:618–641CrossRefGoogle Scholar
  3. 3.
    Cohen P (1973) Eur J Biochem 34:1–14CrossRefGoogle Scholar
  4. 4.
    Schramm HJ, Jennissen HP (1985) J Mol Biol 181:503–516CrossRefGoogle Scholar
  5. 5.
    Wilkinson DA, Marion TN, Tillman DM, Norcum MT, Hainfeld JF, Seyer JM, Carlson GM (1994) J Mol Biol 235:974–982CrossRefGoogle Scholar
  6. 6.
    Norcum MT, Wilkinson DA, Carlson MCh, Hainfeld JF, Carlson GM (1994) J Mol Biol 241:94–102.CrossRefGoogle Scholar
  7. 7.
    Ayers NA, Nadeau OW, Carlson GM (2001) J Biol Chem (in press)Google Scholar
  8. 8.
    Nadeaw OW, Traxler KW, Fee LR, Baldwin BA, Carlson GM (1999) Biochemistry 38:2551–2559.CrossRefGoogle Scholar
  9. 9.
    Wilkinson DA, Fitzgerald TJ, Marion TN, Carlson GM (1999) J Protein Chem 18:157–164CrossRefGoogle Scholar
  10. 10.
    Andreeva IE, Silonova GV, Livanova NB, Eronina TB, Morozov VE, Poglazov BF (1985) Biokhimiya 50:1504–1515 (in Russian)Google Scholar
  11. 11.
    Carlson GM, King MM (1982) FASEB J 41:869Google Scholar
  12. 12.
    Minton AP (2001) J Biol Chem 276:10577–10580CrossRefGoogle Scholar
  13. 13.
    Minton AP (1983) Mol Cell Biochem 55:119–140CrossRefGoogle Scholar
  14. 14.
    Minton AP (2000) Curr Opinion Struct Biol 10:34–39CrossRefGoogle Scholar
  15. 15.
    Tseng H-C, Graves DJ (1998) Biochem Biophys Res Commun 250: 726–730CrossRefGoogle Scholar
  16. 16.
    Yang D-S, Yip CM, Huang THJ, Chakrabartty A, Fraser PE (1999) J Biol Chem 274:32970–32974CrossRefGoogle Scholar
  17. 17.
    Baskakov I, Bolen DW (1998) Biophys J 74:2658–2665CrossRefGoogle Scholar
  18. 18.
    Baskakov I, Wang A, Bolen DW (1998) Biophys J 74:2666–2673Google Scholar
  19. 19.
    Shearwin KE, Winzor DJ (1990) Arch Biochem Biophys 282:297CrossRefGoogle Scholar
  20. 20.
    Winzor CL, Winzor DJ, Pagel LG, Jones GP, Naidu BP (1992) Arch Biochem Biophys 296:102–107CrossRefGoogle Scholar
  21. 21.
    Hall DR, Jacobsen MP, Winzor DJ (1995) Biophys Chem 57:47–54CrossRefGoogle Scholar
  22. 22.
    Mashino T, Fridovich I (1987) Arch Biochem Biophys 258: 356–360CrossRefGoogle Scholar
  23. 23.
    Chebotareva NA, Harding SE, Winzor DJ (2001) Eur J Biochem 268:506–513CrossRefGoogle Scholar
  24. 24.
    Qu Y, Bolen CL, Bolen DW (1998) Proc Natl Acad Sci USA 95:9268–9273CrossRefGoogle Scholar
  25. 25.
    Zimmerman SB, Minton AP (1993) Annu Rev Biophys Biomol Struct 22:27–65CrossRefGoogle Scholar
  26. 26.
    Shearwin KE, Winzor DJ (1988) Biophys Chem 31:287–294CrossRefGoogle Scholar
  27. 27.
    Timasheff SN (1998) Proc Natl Acad Sci USA 95:7363–7367CrossRefGoogle Scholar
  28. 28.
    Cann JR, Coombs RO, Howlett GR, Jacobsen MP, Winzor DJ (1994) Biochemistry 33:10185–10190CrossRefGoogle Scholar
  29. 29.
    Morozov VE, Eronina TB, Andreeva IE, Silonova GV, Soloviyova NV, Schors El, Livanova NB, Poglazov BF (1989) Biokhimiya 54:448–455 (in Russian)Google Scholar
  30. 30.
    Morozov VE (1990) Thesis. Bach Institute of Biochemistry, MoscowGoogle Scholar
  31. 31.
    Ayers A, Wilkinson, DA, Fitzgerald TJ., Carlson GM (1999) J Biol Chem 274:35583–35590CrossRefGoogle Scholar
  32. 32.
    Wilkinson DA, Marion TN, Tillman DM, Norcum MT, Hainfeld JF, Seyer JM, Carlson GM (1994) J Mol Biol 235:974–982CrossRefGoogle Scholar
  33. 33.
    Paudel H.K. (1997) J Biol Chem 272:1777–1785CrossRefGoogle Scholar
  34. 34.
    Kurganov BI, Sugrobova NP, Mil’man (1986) Molekulyarnaya Biologiya 20:41–51 (in Russian)Google Scholar
  35. 35.
    Lyubarev AE, Kurganov BI (1996) In: Kurganov BI, Lyubarev AE (eds) Organization of biochemical systems: structural and regulatory aspects. Nova, New York, pp 1–81Google Scholar
  36. 36.
    Ross PD, Minton AD (1979) Biochem Biophys Res Commun 88:1308–1314CrossRefGoogle Scholar
  37. 37.
    Madden TL, Herzfeld J (1993) Biophys J 65:1147–1154Google Scholar
  38. 38.
    Minton AP (1990) Int J Biochem 22:1063–1067CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Natalia A. Chebotareva
    • 1
  • Iraida E. Andreeva
    • 1
  • Valentina F. Makeeva
    • 1
  • Boris I. Kurganov
    • 1
  • Nataliya B. Livanova
    • 1
  • Stephen E. Harding
    • 2
  1. 1.A.N. Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.NCMH Unit, School of BiosciencesUniversity of NottinghamSutton BoningtonUK

Personalised recommendations