Advertisement

Determination of thermodynamic properties of sodium alginate from bacteria and seaweeds in aqueous solutions

  • A. Straatmann
  • W. Borchard
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)

Abstract

Alginates are biopolymers produced by seaweeds as well as by some bacteria like Pseudomonas aeruginosa or Azotobacter vinelandii. They consist of copolymers containing 1,4-β-d-mannuronate and its 5-epimer α-l-guluronate. Their composition and physical properties depend on the source of the alginate. Different alginates from seaweeds and bacteria have been investigated using analytical ultracentrifugation. The samples were prepared in sodium chloride solution to suppress charge effects of the polymers. From the concentration gradient in equilibrium centrifugation the molar masses and the second virial coefficient are derived. The results obtained by this method are in good agreement with the results of light scattering measurements. The properties of different alginates are compared and discussed.

Key words

Bacterial alginate Sedimentation-diffusion equilibrium Aggregation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rehm BHA, Valla S (1997) Appl Microbiol Biotechnol 48:281CrossRefGoogle Scholar
  2. 2.
    Fasihuddin BA, Wedlock DJ, Omar S, Phillips GO (1988) In: Philips GO, Wedlock DJ, Williams PA (eds) Gums and stabilisers for the food industry. IRL, Oxford pp 89–96Google Scholar
  3. 3.
    Flemming HC, Wingender J, Mayer C, Körstgens V, Borchard W (2000) In: Lappin-Scott H, Gilbert P, Wilson M, Allison D (eds) Community structure and co-operation in biofilms. SGM symposium, vol 59. Cambridge University Press, Cambridge, p 87Google Scholar
  4. 4.
    Wingender J, Neu TR, Flemming H-C (1999) Microbial extracellular polymeric substances, characterization, structure and function. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. 5.
    Rees DA, Welsh EJ (1977) Angew Chem 89:228CrossRefGoogle Scholar
  6. 6.
    Lee JW, Ashby RD, Day DF (1996) Carbohydr Polymers 29:337CrossRefGoogle Scholar
  7. 7.
    Skjåk-Bræk G, Zanetti P, Paoletti S (1989) Carbohydrates 185:131CrossRefGoogle Scholar
  8. 8.
    Graessly WW (1975) In: Advances in polymer science 16. Springer, Berlin Heidelberg New York, p 3Google Scholar
  9. 9.
    Körstgens V, Borchard W (2001) J Microbiol Methods 46:9CrossRefGoogle Scholar
  10. 10.
    Wedlock DJ, Fasihuddin BA, Phillips GO (1986) Int J Biol Macromol 8:57CrossRefGoogle Scholar
  11. 11.
    Horton JC, Harding SE, Mitchell JR, Morton-Holmes DF (1991) Food Hy-drocolloids 5:125Google Scholar
  12. 12.
    Ball A, Harding SE, Mitchell JR (1988) Int J Biol Macromol 10:259CrossRefGoogle Scholar
  13. 13.
    Harding SE, Vårum KM, Stokke BT, Smidsrød O (1991) Adv Carbohydr Anal 1:63Google Scholar
  14. 14.
    Harding SE (1995) Carbohydr Polym 28:227CrossRefGoogle Scholar
  15. 15.
    Fujita H (1962) Mathematical theory of sedimentation analysis. Academic, New YorkGoogle Scholar
  16. 16.
    Meyerhoff G (1960) Angew Chem 72:699CrossRefGoogle Scholar
  17. 17.
    Coelfen H (1994) Dissertation. DuisburgGoogle Scholar
  18. 18.
    Goldberg RJ (1952) J Phys Chem 57:194CrossRefGoogle Scholar
  19. 19.
    Schachmann HK (1959) Ultracentrifugation in biochemistry. Academic, New YorkGoogle Scholar
  20. 20.
    Hinsken H, Borchard W (1995) Colloid Polym Sci 273:913CrossRefGoogle Scholar
  21. 21.
    Durchschlag H, Christl P, Jaenicke R (1991) Colloid Polym Sci 86:41CrossRefGoogle Scholar
  22. 22.
    Cölfen H, Harding SE (1997) Eur Biophys J 25:333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • A. Straatmann
    • 1
  • W. Borchard
    • 1
  1. 1.Institut für Physikalische und Theoretische Chemie der Gerhard-MercatorUniversität DuisburgDuisburgGermany

Personalised recommendations