Evaluation of equilibrium and nonequilibrium density gradients in an analytical ultracentrifuge by calibration with marker particles

  • W. Mächtle
  • M. D. Lechner
Conference paper
Part of the Progress in Colloid and Polymer Science book series (PROGCOLLOID, volume 119)


Density gradient measurements inside an analytical ultracentrifuge (AUC) are an excellent tool for characterizing nanoparticles in the 10—1000-nm diameter range. Because of its very high resolution (i.e. its fractionation power according to the particle density and its high precision) it is possible to analyze the chemical nature of nanoparticles, especially of complex colloidal mixtures. This means that AUC density gradient measurements are a kind of particle density spectroscopy. Usually, the relation between the radial position and particle density, ρ(r), inside an AUC density gradient is calculated by using the well-known (barometrical) equilibrium equation in the formulation of Hermans and Ende (1963); however, this equation for an ideal bimodal density gradient mixture fails in some cases. The higher the content of the heavy component, and the bigger the difference between the actual density gradient being formed and the equilibrium gradient, the bigger the failure or the deviation from ideality. We report a systematic study of these deviations using a marker nanoparticle system of 11 precisely characterized ethylhexyl acrylate/methyl acrylate copolymer latices with known nearly equidistant particle densities. During this study we also learned to use this 11-marker system as a pragmatic and simple calibration system for aqueous density gradients, thereby reducing considerably the error of the measurements in absolute nanoparticle densities. Some application examples are presented. One advantage of the new calibration technique is that higher particle densities are now accessible. Another advantage is the reduction in the measuring time. We no longer have to wait till equilibrium is reached (sometimes up to 90 h!); instead already after 9 h we get reasonable results. This means our static density gradient now approaches a “dynamic” one.

Key words

Analytical ultracentrifuge Density gradient Particle density Colloidal nanoparticles Polymer characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lange H (1980) Colloid Polym Sci 258:1077–1085CrossRefGoogle Scholar
  2. 2.
    Mächtle W (1984) Colloid Polym Sci 262:270–282CrossRefGoogle Scholar
  3. 3.
    Mächtle W (1992) In: Harding SE, et al (ed) AUC in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, pp 147–175Google Scholar
  4. 4.
    Mächtle W, Ley G, Rieger J (1995) Colloid Polym Sci 273:708–716CrossRefGoogle Scholar
  5. 5.
    Mächtle W, Ley G, Steib J (1995) Colloid Polym Sci 99:144–153CrossRefGoogle Scholar
  6. 6.
    Kirsch S, Doerk A, Bartsch E, Sillescu H, Landfester K, Spieß W, Mächtle W (1999) Macromolecules 32:4508–4518CrossRefGoogle Scholar
  7. 7.
    Mächtle W (1999) Prog Colloid Polym Sci 113:1–9CrossRefGoogle Scholar
  8. 8.
    Leyrer RJ, Mächtle W (2000) Macromol Chem Phys 201:1235–1243CrossRefGoogle Scholar
  9. 9.
    Hermans JJ, Ende HA (1963) J Polym Sci Part C Polym Symp 1:161–177CrossRefGoogle Scholar
  10. 10. (a)
    Hearst JE, Vinograd J (1961) Proc Natl Acad Sci USA 47:999–1004CrossRefGoogle Scholar
  11. 10. (b)
    Hearst JE, Vinograd J (1961) Proc Natl Acad Sci USA 47:1005–1014CrossRefGoogle Scholar
  12. 11.
    Munk P (1982) Macromolecules 15:500–505CrossRefGoogle Scholar
  13. 12.
    Lechner MD (1997), Macromol Rapid Commun 18:781–786CrossRefGoogle Scholar
  14. 13.
    Lechner MD, Mächtle W, Sedlack U (1997) Prog Colloid Polym Sci 107:148–153CrossRefGoogle Scholar
  15. 14.
    Lechner MD, Borchard W (1999) Eur Polym J 35:371–376CrossRefGoogle Scholar
  16. 15.
    Lechner MD, Mächtle W, Sedlack U (1997) Prog Colloid Polym Sci 107:154–158CrossRefGoogle Scholar
  17. 16.
    Mächtle W (1999) Biophys J 76:1080–1091CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • W. Mächtle
    • 1
  • M. D. Lechner
    • 2
  1. 1.Kunststofflaboratorium, Polymer PhysicsBASF AGLudwigshafenGermany
  2. 2.Physical ChemistryUniversity OsnabrueckOsnabrueckGermany

Personalised recommendations