Skip to main content

Fast Reduction of Ternary Quadratic Forms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2146))

Abstract

We show that a positive definite integral ternary form can be reduced with O(M(s) log2 s) bit operations, where s is the binary encoding length of the form and M(s) is the bit-complexity of s-bit integer multiplication.

This result is achieved in two steps. First we prove that the the classical Gaussian algorithm for ternary form reduction, in the variant of Lagarias, has this worst case running time. Then we show that, given a ternary form which is reduced in the Gaussian sense, it takes only a constant number of arithmetic operations and a constant number of binary-form reductions to fully reduce the form.

Finally we describe how this algorithm can be generalized to higher dimensions. Lattice basis reduction and shortest vector computation in fixed dimension d can be done with O(M(s) logd-1 s) bit-operations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, 1974.

    MATH  Google Scholar 

  2. J.W.S. Cassels. Rational quadratic forms. Academic Press, 1978.

    Google Scholar 

  3. F. Eisenbrand. Short vectors of planar lattices via continued fractions. Information Processing Letters, 2001, to appear. http://www.mpi-sb.mpg.de/~eisen/report_lattice.ps.gz

  4. C.F. Gauβ. Disquisitiones arithmeticae. Gerh. Fleischer Iun., 1801.

    Google Scholar 

  5. C.F. Gauβ. Recension der “Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber.’ Reprinted in Journal für die reine und angewandte Mathematik, 20:312–320, 1840.

    Google Scholar 

  6. Ch. Hermite. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objets de la théorie des nombres. Journal für die reine und angewandte Mathematik, 40, 1850.

    Google Scholar 

  7. J. C. Lagarias. Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. Journal of Algorithms, 1:142–186, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  8. A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Math. Annalen, 261:515–534, 1982.

    Article  MATH  Google Scholar 

  9. H.W. Lenstra. Integer programming with a fixed number of variables. Mathematics of Operations Research, 8(4):538–548, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Schönhage. Fast reduction and composition of binary quadratic forms. In International Symposium on Symbolic and Algebraic Computation, ISSAC’91, pages 128–133. ACM Press, 1991.

    Google Scholar 

  11. A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen (Fast multiplication of large numbers). Computing, 7:281–292, 1971.

    Article  MATH  Google Scholar 

  12. A. Schrijver. Theory of Linear and Integer Programming. John Wiley, 1986.

    Google Scholar 

  13. L.A. Seeber. Untersuchung über die Eigenschaften der positiven ternären quadratischen Formen. Loeffler, Mannheim, 1831.

    Google Scholar 

  14. I. Semaev. A 3-dimensional lattice reduction algorithm. In Cryptography and Lattices Conference, CALC 2001. This volume, pp. 181–193, 2001.

    Google Scholar 

  15. B. Vallée. An affine point of view on minima finding in integer lattices of lower dimensions. In Proceedings of the European Conference on Computer Algebra, EUROCAL’87, volume 378 of Lecture Notes in Computer Science, pp. 376–378. Springer, Berlin, 1989.

    Google Scholar 

  16. C.K. Yap. Fast unimodular reduction: Planar integer lattices. In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, pages 437–446, Pittsburgh, 1992. IEEE Computer Society Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Eisenbrand, F., Rote, G. (2001). Fast Reduction of Ternary Quadratic Forms. In: Silverman, J.H. (eds) Cryptography and Lattices. CaLC 2001. Lecture Notes in Computer Science, vol 2146. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44670-2_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44670-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42488-8

  • Online ISBN: 978-3-540-44670-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics