The Two Faces of Lattices in Cryptology
- 103 Citations
- 3 Mentions
- 1.7k Downloads
Abstract
Lattices are regular arrangements of points in n-dimensional space, whose study appeared in the 19th century in both number theory and crystallography. Since the appearance of the celebrated Lenstra-Lenstra-Lovász lattice basis reduction algorithm twenty years ago, lattices have had surprising applications in cryptology. Until recently, the applications of lattices to cryptology were only negative, as lattices were used to break various cryptographic schemes. Paradoxically, several positive cryptographic applications of lattices have emerged in the past five years: there now exist public-key cryptosystems based on the hardness of lattice problems, and lattices play a crucial rôle in a few security proofs. We survey the main examples of the two faces of lattices in cryptology.
Keywords
Knapsack Problem Lattice Reduction Modular Equation Digital Signature Algorithm Hermite Normal FormPreview
Unable to display preview. Download preview PDF.
References
- 1.L. M. Adleman. On breaking generalized knapsack publick key cryptosystems. In Proc. of 15th STOC, pages 402–412. ACM, 1983.Google Scholar
- 2.L. M. Adleman. Factoring and lattice reduction. Unpublished manuscript, 1995.Google Scholar
- 3.M. Ajtai. Generating hard instances of lattice problems. In Proc. of 28th STOC, pages 99–108. ACM, 1996. Available at [47] as TR96-007.Google Scholar
- 4.M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions. In Proc. of 30th STOC. ACM, 1998. Available at [47] as TR97-047.Google Scholar
- 5.M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In Proc. of 29th STOC, pages 284–293. ACM, 1997. Available at [47] as TR96-065.Google Scholar
- 6.M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In Proc. 33rd STOC, pages 601–610. ACM, 2001.Google Scholar
- 7.S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. Journal of Computer and System Sciences, 54(2):317–331, 1997.zbMATHMathSciNetCrossRefGoogle Scholar
- 8.L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13, 1986.zbMATHMathSciNetCrossRefGoogle Scholar
- 9.W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296:625–635, 1993.zbMATHMathSciNetCrossRefGoogle Scholar
- 10.M. Bellare, S. Goldwasser, and D. Micciancio. ”Pseudo-random” number generation within cryptographic algorithms: The DSS case. In Proc. of Crypto’97, volume 1294 of LNCS. IACR, Springer-Verlag, 1997.Google Scholar
- 11.M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Proc. of Euro-crypt’94, volume 950 of LNCS, pages 92–111. IACR, Springer-Verlag, 1995.Google Scholar
- 12.D. Bleichenbacher. On the security of the KMOV public key cryptosystem. In Proc. of Crypto’97, volume 1294 of LNCS, pages 235–248. IACR, Springer-Verlag, 1997.Google Scholar
- 13.D. Bleichenbacher and P. Q. Nguyen. Noisy polynomial interpolation and noisy Chinese remaindering. In Proc. of Eurocrypt’ 00, volume 1807 of LNCS. IACR, Springer-Verlag, 2000.Google Scholar
- 14.J. Blömer and J.-P. Seifert. On the complexity of computing short linearly independent vectors and short bases in a lattice. In Proc. of 31st STOC. ACM, 1999.Google Scholar
- 15.D. Boneh. The decision Diffie-Hellman problem. In Algorithmic Number Theory-Proc. of ANTS-III, volume 1423 of LNCS. Springer-Verlag, 1998.Google Scholar
- 16.D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46(2):203–213, 1999.zbMATHMathSciNetGoogle Scholar
- 17.D. Boneh. Finding smooth integers in short intervals using CRT decoding. In Proc. of 32nd STOC. ACM, 2000.Google Scholar
- 18.D. Boneh. Simplified OAEP for the RSA and Rabin functions. In Proc. of Crypto 2001, LNCS. IACR, Springer-Verlag, 2001.Google Scholar
- 19.D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292. In Proc. of Eurocrypt’99, volume 1592 of LNCS, pages 1–11. IACR, Springer-Verlag, 1999.Google Scholar
- 20.D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small fraction of the private key bits. In Proc. of Asiacrypt’98, volume 1514 of LNCS, pages 25–34. Springer-Verlag, 1998.Google Scholar
- 21.D. Boneh, G. Durfee, and N. A. Howgrave-Graham. Factoring n = p r q for large r. In Proc. of Crypto’99, volume 1666 of LNCS. IACR, Springer-Verlag, 1999.Google Scholar
- 22.D. Boneh, A. Joux, and P. Q. Nguyen. Why textbook ElGamal and RSA encryption are insecure. In Proc. of Asiacrypt’ 00, volume 1976 of LNCS. IACR, Springer-Verlag, 2000.Google Scholar
- 23.D. Boneh and I. E. Shparlinski. Hard core bits for the elliptic curve Diffie-Hellman secret. In Proc. of Crypto 2001, LNCS. IACR, Springer-Verlag, 2001.Google Scholar
- 24.D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in Diffie-Hellman and related schemes. In Proc. of Crypto’96, LNCS. IACR, Springer-Verlag, 1996.Google Scholar
- 25.D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to factoring. In Proc. of Eurocrypt’98, volume 1233 of LNCS, pages 59–71. Springer-Verlag, 1998.Google Scholar
- 26.V. Boyko, M. Peinado, and R. Venkatesan. Speeding up discrete log and factoring based schemes via precomputations. In Proc. of Eurocrypt’98, volume 1403 of LNCS, pages 221–235. IACR, Springer-Verlag, 1998.Google Scholar
- 27.E. F. Brickell. Solving low density knapsacks. In Proc. of Crypto’ 83. Plenum Press, 1984.Google Scholar
- 28.E. F. Brickell. Breaking iterated knapsacks. In Proc. of Crypto’ 84, volume 196 of LNCS. Springer-Verlag, 1985.Google Scholar
- 29.E. F. Brickell and A. M. Odlyzko. Cryptanalysis: A survey of recent results. In G. J. Simmons, editor, Contemporary Cryptology, pages 501–540. IEEE Press, 1991.Google Scholar
- 30.J.-Y. Cai. Some recent progress on the complexity of lattice problems. In Proc. of FCRC, 1999. Available at [47] as TR99-006.Google Scholar
- 31.J.-Y. Cai. The complexity of some lattice problems. In Proc. of ANTS-IV, volume 1838 of LNCS. Springer-Verlag, 2000.Google Scholar
- 32.J.-Y. Cai and T. W. Cusick. A lattice-based public-key cryptosystem. Information and Computation, 151:17–31, 1999.zbMATHMathSciNetCrossRefGoogle Scholar
- 33.J.-Y. Cai and A. P. Nerurkar. An improved worst-case to average-case connection for lattice problems. In Proc. of 38th FOCS, pages 468–477. IEEE, 1997.Google Scholar
- 34.S. Cavallar, B. Dodson, A. K. Lenstra, W. Lioen, P. L. Montgomery, B. Murphy, H. te Riele, K. Aardal, J. Gilchrist, G. Guillerm, P. Leyland, J. Marchand, F. Morain, A. Muffett, C. Putnam, and P. Zimmermann. Factorization of 512-bit RSA key using the number field sieve. In Proc. of Eurocrypt’ 00, volume 1807 of LNCS. IACR, Springer-Verlag, 2000.Google Scholar
- 35.B. Chor and R.L. Rivest. A knapsack-type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. Inform. Theory, 34, 1988.Google Scholar
- 36.H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag, 1995. Second edition.Google Scholar
- 37.J.H. Conway and N.J.A. Sloane. Sphere Packings, Lattices and Groups. Springer-Verlag, 1998. Third edition.Google Scholar
- 38.D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. of Cryptology, 10(4):233–260, 1997. Revised version of two articles from Eurocrypt’96.zbMATHMathSciNetCrossRefGoogle Scholar
- 39.D. Coppersmith. Finding small solutions to small degree polynomials. In Proc. of CALC 2001, LNCS. Springer-Verlag, 2001.Google Scholar
- 40.D. Coppersmith and A. Shamir. Lattice attacks on NTRU. In Proc. of Eurocrypt’ 97, LNCS. IACR, Springer-Verlag, 1997.Google Scholar
- 41.M.J. Coster, A. Joux, B.A. LaMacchia, A.M. Odlyzko, C.-P. Schnorr, and J. Stern. Improved low-density subset sum algorithms. Comput. Complexity, 2:111–128, 1992.zbMATHMathSciNetCrossRefGoogle Scholar
- 42.C. Coupé, P. Q. Nguyen, and J. Stern. The effectiveness of lattice attacks against low-exponent RSA. In Proc. of PKC’98, volume 1431 of LNCS. Springer-Verlag, 1999.Google Scholar
- 43.W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Inform. Theory, IT-22:644–654, Nov 1976.Google Scholar
- 44.I. Dinur. Approximating SVP∞ to within almost-polynomial factors is NP-hard. Available at [47] as TR99-016.Google Scholar
- 45.I. Dinur, G. Kindler, and S. Safra. Approximating CVP to within almost-polynomial factors is NP-hard. In Proc. of 39th FOCS, pages 99–109. IEEE, 1998. Available at [47] as TR98-048.Google Scholar
- 46.G. Durfee and P. Q. Nguyen. Cryptanalysis of the RSA schemes with short secret exponent from Asiacrypt’99. In Proc. of Asiacrypt’ 00, volume 1976 of LNCS. IACR, Springer-Verlag, 2000.Google Scholar
- 47.ECCC. http://www.eccc.uni-trier.de/eccc/. The Electronic Colloquium on Computational Complexity.
- 48.E. El Mahassni, P. Q. Nguyen, and I. E. Shparlinski. The insecurity of Nyberg-Rueppel and other DSA-like signature schemes with partially known nonces. In Proc. of CALC 2001, LNCS. Springer-Verlag, 2001.Google Scholar
- 49.P. van Emde Boas. Another NP-complete problem and the complexity of computing short vectors in a lattice. Technical report, Mathematische Instituut, University of Amsterdam, 1981. Report 81-04. Available at http://turing.wins.uva.nl/~peter/.
- 50.R. Fischlin and J.-P. Seifert. Tensor-based trapdoors for CVP and their application to public key cryptography. In IMA Conference on Cryptography and Coding, LNCS. Springer-Verlag, 1999.Google Scholar
- 51.A. M. Frieze. On the Lagarias-Odlyzko algorithm for the subset sum problem. SI AM J. Comput, 15(2):536–539, 1986.zbMATHMathSciNetCrossRefGoogle Scholar
- 52.A. M. Frieze, J. Håstad, R. Kannan, J. C. Lagarias, and A. Shamir. Reconstructing truncated integer variables satisfying linear congruences. SI AM J. Comput., 17(2):262–280, 1988. Special issue on cryptography.zbMATHCrossRefGoogle Scholar
- 53.E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under the RSA assumption. In Proc. of Crypto 2001, LNCS. IACR, Springer-Verlag, 2001.Google Scholar
- 54.M. L. Furst and R. Kannan. Succinct certificates for almost all subset sum problems. SIAM J. Comput, 18(3):550–558, 1989.zbMATHMathSciNetCrossRefGoogle Scholar
- 55.C.F. Gauss. Disquisitiones Arithmeticæ, Leipzig, 1801.Google Scholar
- 56.C. Gentry. Key recovery and message attacks on NTRU-composite. In Proc. of Eurocrypt 2001, volume 2045 of LNCS. IACR, Springer-Verlag, 2001.Google Scholar
- 57.M. Girault and J.-F. Misarsky. Cryptanalysis of countermeasures proposed for repairing ISO 9796-1. In Proc. of Eurocrypt’ w00, volume 1807 of LNCS. IACR, Springer-Verlag, 2000.Google Scholar
- 58.O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. In Proc. of 30th STOC. ACM, 1998. Available at [47] as TR97-031.Google Scholar
- 59.O. Goldreich, S. Goldwasser, and S. Halevi. Challenges for the GGH cryptosystem. Available at http://theory.lcs.mit.edu/ shaih/challenge.html.
- 60.O. Goldreich, S. Goldwasser, and S. Halevi. Eliminating decryption errors in the Ajtai-Dwork cryptosystem. In Proc. of Crypto’97, volume 1294 of LNCS, pages 105–111. IACR, Springer-Verlag, 1997. Available at [47] as TR97-018.Google Scholar
- 61.O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lattice reduction problems. In Proc. of Crypto’97, volume 1294 of LNCS, pages 112–131. IACR, Springer-Verlag, 1997. Available at [47] as TR96-056.Google Scholar
- 62.O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors, 1999. Available at [47] as TR99-002.Google Scholar
- 63.M. I. González Vasco and I. E. Shparlinski. On the security of Diffie-Hellman bits. In K.-Y. Lam, I. E. Shparlinski, H. Wang, and C. Xing, editors, Proc. Workshop on Cryptography and Comp. Number Theory (CCNT’99). Birkhauser, 2000.Google Scholar
- 64.M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, 1993.Google Scholar
- 65.M. Gruber and C. G. Lekkerkerker. Geometry of Numbers. North-Holland, 1987.Google Scholar
- 66.J. Håstad. Solving simultaneous modular equations of low degree. SIAM J. Comput., 17(2):336–341, April 1988. Preliminary version in Proc. of Crypto’ 85.Google Scholar
- 67.B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced bases. Theoretical Computer Science, 41:125–139, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
- 68.C. Hermite. Extraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. J. Reine Angew. Math., 40:279–290, 1850. Also available in the first volume of Hermite’s complete works, published by Gauthier-Villars.Google Scholar
- 69.J. Hoffstein, J. Pipher, and J.H. Silverman. NTRU: a ring based public key cryptosystem. In Proc. of ANTS III, volume 1423 of LNCS, pages 267–288. Springer-Verlag, 1998. Additional information at http://www.ntru.com. Google Scholar
- 70.N. A. Howgrave-Graham. Finding small roots of univariate modular equations revisited. In Cryptography and Coding, volume 1355 of LNCS, pages 131–142. Springer-Verlag, 1997.CrossRefGoogle Scholar
- 71.N. A. Howgrave-Graham. Computational Mathematics Inspired by RSA. PhD thesis, University of Bath, 1998.Google Scholar
- 72.N. A. Howgrave-Graham. Approximate integer common divisors. In Proc. of CALC 2001, LNCS. Springer-Verlag, 2001.Google Scholar
- 73.N. A. Howgrave-Graham and N. P. Smart. Lattice attacks on digital signature schemes. Technical report, HP Labs, 1999. HPL-1999-90. To appear in Designs, Codes and Cryptography.Google Scholar
- 74.E. Jaulmes and A. Joux. A chosen ciphertext attack on NTRU. In Proc. of Crypto 2000, volume 1880 of LNCS. IACR, Springer-Verlag, 2000.Google Scholar
- 75.A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst. J. of Cryptology, 11:161–185, 1998.zbMATHMathSciNetCrossRefGoogle Scholar
- 76.C. S. Jutla. On finding small solutions of modular multivariate polynomial equations. In Proc. of Eurocrypt’98, volume 1403 of LNCS, pages 158–170. IACR, Springer-Verlag, 1998.Google Scholar
- 77.R. Kannan. Improved algorithms for integer programming and related lattice problems. In Proc. of 15th STOC, pages 193–206. ACM, 1983.Google Scholar
- 78.R. Kannan. Algorithmic geometry of numbers. Annual review of computer science, 2:231–267, 1987.MathSciNetCrossRefGoogle Scholar
- 79.R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res., 12(3):415–440, 1987.zbMATHMathSciNetGoogle Scholar
- 80.P. Klein. Finding the closest lattice vector when it’s unusually close. In Proc. of SODA’ 00. ACM-SIAM, 2000.Google Scholar
- 81.S. V. Konyagin and T. Seger. On polynomial congruences. Mathematical Notes, 55(6):596–600, 1994.MathSciNetCrossRefGoogle Scholar
- 82.A. Korkine and G. Zolotareff. Sur les formes quadratiques positives ternaires. Math. Ann., 5:581–583, 1872.MathSciNetCrossRefGoogle Scholar
- 83.A. Korkine and G. Zolotareff. Sur les formes quadratiques. Math. Ann., 6:336–389, 1873.MathSciNetCrossRefGoogle Scholar
- 84.J. C. Lagarias. Point lattices. In R. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, volume 1, chapter 19. Elsevier, 1995.Google Scholar
- 85.J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum problems. Journal of the Association for Computing Machinery, January 1985.Google Scholar
- 86.L. Lagrange. Recherches d’arithm’etique. Nouv. Mém. Acad., 1773.Google Scholar
- 87.A. K. Lenstra and H. W. Lenstra, Jr. The Development of the Number Field Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, 1993.Google Scholar
- 88.A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Ann., 261:513–534, 1982.Google Scholar
- 89.H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Technical report, Mathematisch Instituut, Universiteit van Amsterdam, April 1981. Report 81-03.Google Scholar
- 90.H. W. Lenstra, Jr. Integer programming with a fixed number of variables. Math. Oper. Res., 8(4):538–548, 1983.zbMATHMathSciNetCrossRefGoogle Scholar
- 91.L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50. SIAM Publications, 1986. CBMS-NSF Regional Conference Series in Applied Mathematics.Google Scholar
- 92.J. Martinet. Les Réseaux Parfaits des Espaces Euclidiens. Éditions Masson, 1996. English translation to appear at Springer-Verlag.Google Scholar
- 93.J. E. Mazo and A. M. Odlyzko. Lattice points in high-dimensional spheres. Monatsh. Math., 110:47–61, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
- 94.R.J. McEliece. A public-key cryptosystem based on algebraic number theory. Technical report, Jet Propulsion Laboratory, 1978. DSN Progress Report 42-44.Google Scholar
- 95.A. Menezes, P. Van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press, 1997.Google Scholar
- 96.R. Merkle and M. Hellman. Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Inform. Theory, IT-24:525–530, September 1978.Google Scholar
- 97.D. Micciancio. On the Hardness of the Shortest Vector Problem. PhD thesis, Massachusetts Institute of Technology, 1998.Google Scholar
- 98.D. Micciancio. The shortest vector problem is NP-hard to approximate within some constant. In Proc. of 39th FOCS. IEEE, 1998. Available at [47] as TR98-016.Google Scholar
- 99.D. Micciancio. Lattice based cryptography: A global improvement. Technical report, Theory of Cryptography Library, 1999. Report 99-05.Google Scholar
- 100.D. Micciancio. The hardness of the closest vector problem with preprocessing. IEEE Trans. Inform. Theory, 47(3):1212–1215, 2001.zbMATHMathSciNetCrossRefGoogle Scholar
- 101.D. Micciancio. Improving lattice-based cryptosystems using the Hermite normal form. In Proc. of CALC 2001, LNCS. Springer-Verlag, 2001.Google Scholar
- 102.J. Milnor and D. Husemoller. Symmetric Bilinear Forms. Springer-Verlag, 1973.Google Scholar
- 103.H. Minkowski. Geometrie der Zahlen. Teubner-Verlag, Leipzig, 1896.Google Scholar
- 104.J.-F. Misarsky. A multiplicative attack using LLL algorithm on RSA signatures with redundancy. In Proc. of Crypto’97, volume 1294 of LNCS, pages 221–234. IACR, Springer-Verlag, 1997.Google Scholar
- 105.P. L. Montgomery. Square roots of products of algebraic numbers. In Walter Gautschi, editor, Mathematics of Computation 1943-1993: a Half-Century of Computational Mathematics, Proc. of Symposia in Applied Mathematics, pages 567–571. American Mathematical Society, 1994.Google Scholar
- 106.National Institute of Standards and Technology (NIST). FIPS Publication 186: Digital Signature Standard, May 1994.Google Scholar
- 107.P. Q. Nguyen. A Montgomery-like square root for the number field sieve. In Algorithmic Number Theory-Proc. of ANTS-III, volume 1423 of LNCS. Springer-Verlag, 1998.CrossRefGoogle Scholar
- 108.P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem from Crypto’97. In Proc. of Crypto’99, volume 1666 of LNCS, pages 288–304. IACR, Springer-Verlag, 1999.Google Scholar
- 109.P. Q. Nguyen. La Géométrie des Nombres en Cryptologie. PhD thesis, Université Paris 7, November 1999. Available at http://www.di.ens.fr/~pnguyen/.
- 110.P. Q. Nguyen. The dark side of the hidden number problem: Lattice attacks on DSA. In K.-Y. Lam, I. E. Shparlinski, H. Wang, and C. Xing, editors, Proc. Workshop on Cryptography and Comp. Number Theory (CCNT’99). Birkhauser, 2000.Google Scholar
- 111.P. Q. Nguyen and I. E. Shparlinski. The insecurity of the Digital Signature Algorithm with partially known nonces. J. of Cryptology, 2001. To appear.Google Scholar
- 112.P. Q. Nguyen and I. E. Shparlinski. The insecurity of the elliptic curve Digital Signature Algorithm with partially known nonces. Preprint, 2001.Google Scholar
- 113.P. Q. Nguyen and J. Stern. Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations. In Proc. of Crypto’97, volume 1294 of LNCS, pages 198–212. IACR, Springer-Verlag, 1997.Google Scholar
- 114.P. Q. Nguyen and J. Stern. Cryptanalysis of a fast public key cryptosystem presented at SAC’ 97. In Selected Areas in Cryptography-Proc. of SAC’98, volume 1556 of LNCS. Springer-Verlag, 1998.Google Scholar
- 115.P. Q. Nguyen and J. Stern. Cryptanalysis of the Ajtai-Dwork cryptosystem. In Proc. of Crypto’98, volume 1462 of LNCS, pages 223–242. IACR, Springer-Verlag, 1998.Google Scholar
- 116.P. Q. Nguyen and J. Stern. The Béguin-Quisquater server-aided RSA protocol from Crypto’ 95 is not secure. In Proc. of Asiacrypt’98, volume 1514 of LNCS, pages 372–379. Springer-Verlag, 1998.Google Scholar
- 117.P. Q. Nguyen and J. Stern. The hardness of the hidden subset sum problem and its cryptographic implications. In Proc. of Crypto’ 99, volume 1666 of LNCS, pages 31–46. IACR, Springer-Verlag, 1999.Google Scholar
- 118.P. Q. Nguyen and J. Stern. Lattice reduction in cryptology: An update. In Proc. of ANTS-IV, volume 1838 of LNCS. Springer-Verlag, 2000.Google Scholar
- 119.A. M. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology and Computational Number Theory, volume 42 of Proc. of Symposia in Applied Mathematics, pages 75–88. A.M.S., 1990.Google Scholar
- 120.R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.zbMATHMathSciNetCrossRefGoogle Scholar
- 121.C. P. Schnorr. A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science, 53:201–224, 1987.zbMATHMathSciNetCrossRefGoogle Scholar
- 122.C. P. Schnorr. A more efficient algorithm for lattice basis reduction. J. of algorithms, 9(1):47–62, 1988.zbMATHMathSciNetCrossRefGoogle Scholar
- 123.C. P. Schnorr. Factoring integers and computing discrete logarithms via diophantine approximation. In Proc. of Eurocrypt’91, volume 547 of LNCS, pages 171–181. IACR, Springer-Verlag, 1991.Google Scholar
- 124.C. P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Math. Programming, 66:181–199, 1994.MathSciNetCrossRefGoogle Scholar
- 125.C. P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryptosystem by improved lattice reduction. In Proc. of Eurocrypt’95, volume 921 of LNCS, pages 1–12. IACR, Springer-Verlag, 1995.Google Scholar
- 126.A. Shamir. A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem. In Proc. of 23rd FOCS, pages 145–152. IEEE, 1982.Google Scholar
- 127.V. Shoup. Number Theory C++ Library (NTL) version 3.6. Available at http://www.shoup.net/ntl/
- 128.V. Shoup. OAEP reconsidered. In Proc. of Crypto 2001, LNCS. IACR, Springer-Verlag, 2001.Google Scholar
- 129.I. E. Shparlinski. On the generalized hidden number problem and bit security of XTR. In Proc. of 14th Symp. on Appl. Algebra, Algebraic Algorithms, and Error-Correcting Codes, LNCS. Springer-Verlag, 2001.Google Scholar
- 130.I. E. Shparlinski. Sparse polynomial approximation in finite fields. In Proc. 33rd STOC. ACM, 2001.Google Scholar
- 131.C. L. Siegel. Lectures on the Geometry of Numbers. Springer-Verlag, 1989.Google Scholar
- 132.B. Vallée. La réduction des réseaux. autour de l’algorithme de Lenstra, Lenstra, Lovász. RAIRO Inform. Théor. Appl, 23(3):345–376, 1989.MathSciNetzbMATHGoogle Scholar
- 133.B. Vallée, M. Girault, and P. Toffin. How to guess l-th roots modulo n by reducing lattice bases. In Proc. of AAEEC-6, volume 357 of LNCS, pages 427–442. Springer-Verlag, 1988.Google Scholar
- 134.S. A. Vanstone and R. J. Zuccherato. Short RSA keys and their generation. J. of Cryptology, 8(2):101–114, 1995.zbMATHGoogle Scholar
- 135.S. Vaudenay. Cryptanalysis of the Chor-Rivest cryptosystem. In Proc. of Crypto’98, volume 1462 of LNCS. IACR, Springer-Verlag, 1998.Google Scholar
- 136.E. R. Verheul. Certificates of recoverability with scalable recovery agent security. In Proc. ofPKC’00, LNCS. Springer-Verlag, 2000.Google Scholar
- 137.M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Trans. Inform. Theory, 36(3):553–558, 1990.zbMATHMathSciNetCrossRefGoogle Scholar