An Overview of the Sieve Algorithm for the Shortest Lattice Vector Problem

  • Miklós Ajtai
  • Ravi Kumar
  • Dandapani Sivakumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2146)


We present an overview of a randomized 2g(n) time algorithm to compute a shortest non-zero vector in an n-dimensional rational lattice. The complete details of this algorithm can be found in [2].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ajtai. The shortest vector problem in L 2 is NP-hard for randomized reductions. Proc. 30th ACM Symposium on Theory of Computing, pp. 10–19, 1998.Google Scholar
  2. 2.
    M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. Proc. 33rd ACM Symposium on Theory of Computing, 2001. To appear.Google Scholar
  3. 3.
    P. van Emde Boas. Another NP-complete partition problem and the complexity of computing short vectors in lattices. Mathematics Department, University of Amsterdam, TR 81-04, 1981.Google Scholar
  4. 4.
    C. F. Gauss. Disquisitiones Arithmeticae. English edition, (Translated by A. A. Clarke) Springer-Verlag, 1966.Google Scholar
  5. 5.
    O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems. Journal of Computer and System Sciences, 60(3):540–563, 2000.zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Helfrich. Algorithms to construct Minkowski reduced and Hermite reduced bases. Theoretical Computer Science, 41:125–139, 1985.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Hermite. Second letter to Jacobi, Oeuvres, I, Journal für Mathematik, 40:122–135, 1905.Google Scholar
  8. 8.
    R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of Operations Research, 12:415–440, 1987. Preliminary version in ACM Symposium on Theory of Computing 1983.zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Kumar and D. Sivakumar. On polynomial approximations to the shortest lattice vector length. Proc. 12th Symposium on Discrete Algorithms, 2001.Google Scholar
  10. 10.
    A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261:515–534, 1982.zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    J. C. Lagarias, H. W. Lenstra, and C. P. Schnorr. Korkine-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica, 10:333–348, 1990.zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    D. Micciancio. The shortest vector in a lattice is hard to approximate to within some constant. Proc. 39th IEEE Symposium on Foundations of Computer Science, pp. 92–98, 1998.Google Scholar
  13. 13.
    H. Minkowski. Geometrie der Zahlen. Leipzig, Teubner, 1990.Google Scholar
  14. 14.
    C. P. Schnorr. A hierarchy of polynomial time basis reduction algorithms. Theoretical Computer Science, 53:201–224, 1987.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Miklós Ajtai
    • 1
  • Ravi Kumar
    • 1
  • Dandapani Sivakumar
    • 1
  1. 1.IBM Almaden Research CenterSan Jose

Personalised recommendations