Skip to main content

Divisibility Monoids: Presentation, Word Problem, and Rational Languages

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2138))

Included in the following conference series:

Abstract

We present three results on divisibility monoids. These divisibility monoids were introduced in [11] as an algebraic generalization of Mazurkiewicz trace monoids. (1) We give a decidable class of presentations that gives rise precisely to all divisibility monoids. (2) We show that any divisibility monoid is an automatic monoid [5]. This implies that its word problem is solvable in quadratic time. (3) We investigate when a divisibility monoid satisfies Kleeneā€™s Theorem. It turns out that this is the case iff the divisibility monoid is a rational monoid [25] iff it is width-bounded. The two latter results rest on a normal form for the elements of a divisibility monoid that generalizes the Foata normal form known from the theory of Mazurkiewicz traces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Berry. Stable models of typed Ī»-calculi. In 5th ICALP, Lecture Notes in Comp. Science vol. 62, pages 72ā€“89. Springer, 1978.

    Google ScholarĀ 

  2. G. Birkhoff. Lattice Theory. Colloquium Publications vol. 25. American Mathematical Society, Providence, 1973.

    Google ScholarĀ 

  3. B. Bosbach. Representable divisibility semigroups. Proc. Edinb. Math. Soc., II. Ser., 34(1):45ā€“64, 1991.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  4. J.R. BĆ¼chi. On a decision method in restricted second order arithmetics. In E. Nagel et al., editor, Proc. Intern. Congress on Logic, Methodology and Philosophy of Science, pages 1ā€“11. Stanford University Press, Stanford, 1960.

    Google ScholarĀ 

  5. C. M. Campbell, E. F. Robertson, N. RuÅ”kuc, and R. M. Thomas. Automatic semigroups. Theoretical Computer Science, 250:365ā€“391, 2001.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  6. R. Corran. On monoids related to braid groups. PhD thesis, University of Sydney, 2000.

    Google ScholarĀ 

  7. P. Dehornoy and L. Paris. Gaussian groups and Garside groups, two generalizations of Artin groups. Proc. London Math. Soc., 79:569ā€“604, 1999.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  8. V. Diekert. Combinatorics on Traces. Lecture Notes in Comp. Science vol. 454. Springer, 1990.

    Google ScholarĀ 

  9. V. Diekert and G. Rozenberg. The Book of Traces. World Scientific Publ. Co., 1995.

    Google ScholarĀ 

  10. M. Droste. Recognizable languages in concurrency monoids. Theoretical Comp. Science, 150:77ā€“109, 1995.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  11. M. Droste and D. Kuske. On recognizable languages in divisibility monoids. In G. Ciobanu and Gh. Paun, editors, FCT99, Lecture Notes in Comp. Science vol. 1684, pages 246ā€“257. Springer, 1999.

    Google ScholarĀ 

  12. M. Droste and D. Kuske. Recognizable languages in divisibility monoids. Mathematical Structures in Computer Science, 2000. To appear.

    Google ScholarĀ 

  13. C. Duboc. Commutations dans les monoĆÆdes libres: un cadre thĆ©orique pour lā€™Ć©tude du parallelisme. ThĆØse, FacultĆ© des Sciences de lā€™UniversitĆ© de Rouen, 1986.

    Google ScholarĀ 

  14. C.C. Elgot and G. Mezei. On relations defined by generalized finite automata. IBM J. Res. Develop., 9:47ā€“65, 1965.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  15. D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word Processing In Groups. Jones and Bartlett Publishers, Boston, 1992.

    MATHĀ  Google ScholarĀ 

  16. The GAP Group, Aachen, St Andrews. GAP-Groups, Algorithms, and Programming, Version 4.2, 1999. (http://www-gap.dcs.st-and.ac.uk/~gap).

  17. J.F.P. Hudson. Regular rewrite systems and automatic structures. In J. Almeida, G.M.S. Gomes, and P.V. Silva, editors, Semigroups, Automata and Languages, pages 145ā€“152, Singapure, 1996. World Scientific.

    Google ScholarĀ 

  18. S.C. Kleene. Representation of events in nerve nets and finite automata. In C.E. Shannon and J. McCarthy, editors, Automata Studies, Annals of Mathematics Studies vol. 34, pages 3ā€“40. Princeton University Press, 1956.

    Google ScholarĀ 

  19. D. Kuske. Contributions to a Trace Theory beyond Mazurkiewicz Traces. Technical report, TU Dresden, 1999.

    Google ScholarĀ 

  20. D. Kuske. On rational and on left divisibility monoids. Technical Report MATHAL-3-1999, TU Dresden, 1999.

    Google ScholarĀ 

  21. A. Mazurkiewicz. Concurrent program schemes and their interpretation. Technical report, DAIMI Report PB-78, Aarhus University, 1977.

    Google ScholarĀ 

  22. E. Ochmański. Regular behaviour of concurrent systems. Bull. Europ. Assoc. for Theor. Comp. Science, 27:56ā€“67, 1985.

    Google ScholarĀ 

  23. M. Peletier and J. Sakarovitch. Easy multiplications. II. Extensions of rational semigroups. Information and Computation, 88:18ā€“59, 1990.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  24. F.P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30:264ā€“286, 1930.

    ArticleĀ  Google ScholarĀ 

  25. J. Sakarovitch. Easy multiplications. I. The realm of Kleeneā€™s Theorem. Information and Computation, 74:173ā€“197, 1987.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  26. M.P. SchĆ¼tzenberger. On the definition of a family of automata. Inf. Control, 4:245ā€“270, 1961.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  27. G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri nets: Applications and Relationships to Other Models of Concurrency, Lecture Notes in Comp. Science vol. 255, pages 325ā€“392. Springer, 1987.

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuske, D. (2001). Divisibility Monoids: Presentation, Word Problem, and Rational Languages. In: Freivalds, R. (eds) Fundamentals of Computation Theory. FCT 2001. Lecture Notes in Computer Science, vol 2138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44669-9_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44669-9_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42487-1

  • Online ISBN: 978-3-540-44669-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics