Skip to main content

On Computing Ad-hoc Selective Families

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2129))

Abstract

We study the problem of computing ad-hoc selective families: Given a collection \( \mathcal{F} \) of subsets of [n] = {1,2,...,n}, a selective family for \( \mathcal{F} \) is a collection \( \mathcal{S} \) of subsets of [n] such that for any F\( \mathcal{F} \) there exists S\( \mathcal{S} \) such that |F ∩ S|=1. We first provide a polynomial-time algorithm that, for any instance \( \mathcal{F} \) , returns a selective family of size O((1+ log( max / min )) · log |\( \mathcal{F} \)| ) where ∏max and ∏min denote the maximal and the minimal size of a subset in \( \mathcal{F} \), respectively. This result is applied to the problem of broadcasting in radio networks with known topology. We indeed develop a broadcasting protocol which completes any broadcast operation within O(D log ∏ log n/D) time-slots, where n, D and ∏ denote the number of nodes, the maximal eccentricity, and the maximal in-degree of the network, respectively. Finally, we consider the combinatorial optimization problem of computing broadcasting protocols with minimal completion time and we prove some hardness results regarding the approximability of this problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon,, A. Bar-Noy, N. Linial, and D. Peleg (1991), A lower bound for radio broadcast, J. Comput. System Sci., 43, 290–298.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon and J. Spencer (1992), The probabilistic method, Wiley.

    Google Scholar 

  3. R. Bar-Yehuda, O. Goldreich, and A. Itai (1992), On the time-complexity of broadcast operations in multi-hop radio networks: an exponential gap between determinism and randomization, J. Comput. System Sci., 45, 104–126.

    Article  MATH  MathSciNet  Google Scholar 

  4. I. Chlamtac and S. Kutten (1985), On Broadcasting in Radio Networks-Problem Analysis and Protocol Design, IEEE Trans. on Communications, 33, 1240–1246.

    Article  MATH  Google Scholar 

  5. I. Chlamtac, O. Weinstein (1991), The Wave Expansion Approach to Broadcasting in Multihop Radio Networks, IEEE Trans. on Communications, 39, 426–433.

    Article  Google Scholar 

  6. B.S. Chlebus, L. Gcaasieniec, A.M. Gibbons, A. Pelc, and W. Rytter (2000), Deterministic broadcasting in unknown radio networks, Proc. of 11th ACM-SIAM SODA, 861–870.

    Google Scholar 

  7. B. S. Chlebus, L. G. casieniec, A. Ostlin, and J. M. Robson (2000), Deterministic radio broadcasting, Proc. of 27th ICALP, LNCS, 1853, 717–728.

    Google Scholar 

  8. M. Chrobak, L. G. casieniec, W. Rytter (2000), Fast broadcasting and gossiping in radio networks, Proc. of 41st IEEE FOCS, 575–581.

    Google Scholar 

  9. A.E.F. Clementi, A. Monti, and R. Silvestri (2001), Selective Families, Superimposed Codes, and Broadcasting on Unknown Networks, Proc. 12th ACM-SIAM SODA, 709–718.

    Google Scholar 

  10. R. Gallager (1985), A perspective on multiaccess channels, IEEE Trans. Inform. Theory, 31, 124–142.

    Article  MATH  MathSciNet  Google Scholar 

  11. I. Gaber and Y. Mansour (1995), Broadcast in Radio Networks, Proc. 6th ACM-SIAM SODA, 577–585.

    Google Scholar 

  12. R. Motwani and P. Raghavan (1995), Randomized Algorithms, Cambridge University Press.

    Google Scholar 

  13. C.H. Papadimitriou (1994), Computational Complexity, Addison Wesley.

    Google Scholar 

  14. C.H. Papadimitriou and M. Yannakakis (1991), Optimization, approximation, and complexity classes, J. Comput. System Sci., 43, 425–440.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Pelc (2000), Broadcasting in Radio Networks, unpublished manuscript.

    Google Scholar 

  16. L.G. Roberts (1972), Aloha Packet System with and without Slots and Capture, ASS Notes 8, Advanced Research Projects Agency, Network Information Center, Stanford Research Institute.

    Google Scholar 

  17. T.J. Schaefer (1979), The complexity of satisfiability problems, Proc. 10th ACM STOC, 216–226.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clementi, A.E.F., Crescenzi, P., Monti, A., Penna, P., Silvestri, R. (2001). On Computing Ad-hoc Selective Families. In: Goemans, M., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds) Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques. RANDOM APPROX 2001 2001. Lecture Notes in Computer Science, vol 2129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44666-4_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-44666-4_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42470-3

  • Online ISBN: 978-3-540-44666-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics