Skip to main content

On Computing Solutions to Belief Change Scenarios

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2143))

Abstract

Belief change scenarios were recently introduced as a framework for expressing different forms of belief change. In this paper, we show how belief revision and belief contraction (within belief change scenarios) can be axiomatised by means of quantified Boolean formulas. This approach has several benefits. First, it furnishes an axiomatic specification of belief change within belief change scenarios. Second, this axiomatisation allows us to identify upper bounds for the complexity of revision and contraction within belief change scenarios. We strengthen these upper bounds by providing strict complexity results for the considered reasoning tasks. Finally, we obtain an implementation of different forms of belief change by appeal to the existing system QUIP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Alchourrón, P. Gardenfors, and D. Makinson. On the Logic of Theory Change: Partial Meet Contraction and Revision Functions. Journal of Symbolic Logic, 50:510–530, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Cadoli, A. Giovanardi, and M. Schaerf. An Algorithm to Evaluate Quantified Boolean Formulae. In Proc. AAAI-98, pages 262–267, 1998.

    Google Scholar 

  3. J. Delgrande and T. Schaub. A Consistency-Based Model for Belief Change: Preliminary Report. In Proc. AAAI-00, pages 392–398, 2000.

    Google Scholar 

  4. E. Eder. Relative Complexities of First Order Calculi. Vieweg Verlag, Braunschweig, 1992.

    MATH  Google Scholar 

  5. U. Egly, T. Eiter, R. Feldmann, V. Klotz, S..Schamberger, H. Tompits, and S. Woltran. On Mechanizing Modal Nonmonotonic Logics. In Proc. DGNMR-01, pages 44–53, 2001.

    Google Scholar 

  6. U. Egly, T. Eiter, V. Klotz, H. Tompits, and S. Woltran. Computing Stable Models with Quantified Boolean Formulas: Some Experimental Results. In Proc. AAAISpring Symposium-01, pages 53–59, 2001.

    Google Scholar 

  7. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas. In Proc. AAAI-00, pages 417–422, 2000.

    Google Scholar 

  8. R. Feldmann, B. Monien, and S. Schamberger. A Distributed Algorithm to Evaluate Quantified Boolean Formulas. In Proc. AAAI-00, pages 285–290, 2000.

    Google Scholar 

  9. A. Fuhrmann and S. Hansson. A Survey of Multiple Contraction. Journal of Logic, Language, and Information, 3:39–74, 1994.

    Article  MathSciNet  Google Scholar 

  10. P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. The MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  11. H. Kautz and B. Selman. Planning as Satisfiability. In Proc. ECAI-92, pages 359–363, 1992.

    Google Scholar 

  12. H. Kleine-Büning, M. Karpinski, and A. Flögel. Resolution for Quantified Boolean Formulas. Information and Computation, 117(1):12–18, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. Nebel. Syntax Based Approaches to Belief Revision. In P. Gardenfors, editor, Belief Revision, pages 52–88. Cambridge University Press, 1992.

    Google Scholar 

  14. D. A. Plaisted and S. Greenbaum. A Structure Preserving Clause Form Translation. Journal of Symbolic Computation, 2(3):293–304, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. Rintanen. Constructing Conditional Plans by a Theorem Proven Journal of Artificial Intelligence Research, 10:323–352, 1999.

    MATH  Google Scholar 

  16. J. Rintanen. Improvements to the Evaluation of Quantified Boolean Formulae. In Proc. IJCAI-99, pages 1192–1197, 1999.

    Google Scholar 

  17. L. J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3(1): 1–22, 1976.

    Article  MathSciNet  Google Scholar 

  18. C. Wrathall. Complete Sets and the Polynomial-Time Hierarchy. Theoretical Computer Science, 3(1):23–33, 1976.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Delgrande, J.P., Schaub, T., Tompits, H., Woltran, S. (2001). On Computing Solutions to Belief Change Scenarios. In: Benferhat, S., Besnard, P. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2001. Lecture Notes in Computer Science(), vol 2143. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44652-4_45

Download citation

  • DOI: https://doi.org/10.1007/3-540-44652-4_45

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42464-2

  • Online ISBN: 978-3-540-44652-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics