Advertisement

Using the Cross-Entropy Method to Guide/Govern Mobile Agent’s Path Finding in Networks

  • Bjarne E. Helvik
  • Otto Wittner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 2164)

Abstract

The problem of finding paths in networks is general and many faceted with a wide range of engineering applications in communication networks. Finding the optimal path or combination of paths usually leads to NP-hard combinatorial optimization problems. A recent and promising method, the cross-entropy method proposed by Rubinstein, manages to produce optimal solutions to such problems in polynomial time. However this algorithm is centralized and batch oriented. In this paper we show how the cross-entropy method can be reformulated to govern the behaviour of multiple mobile agents which act independently and asynchronously of each other. The new algorithm is evaluate on a set of well known Travelling Salesman Problems. A simulator, based on the Network Simulator package, has been implemented which provide realistic simulation environments. Results show good performance and stable convergence towards near optimal solution of the problems tested.

Keywords

Tabu Search Destination Node Optimal Path Mobile Agent Travel Salesman Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Michael O. Ball l & al. “Handbooks in Operation Research and Management Science, Vol. 7 Network Models”, North Holland, 1995Google Scholar
  2. [2]
    Michael O. Ball l & al. “Handbooks in Operation Research and Management Science, Volume 8: Network Routing, North Holland, 1995Google Scholar
  3. [3]
    Glover, F.“Tabu search”, in Encyclopedia of Operations Research and Management Science, edited by S. I. Gass and C. M. Harris, Kluwer, 1996.Google Scholar
  4. [4]
    Goldberg, D. Genetic Algorithms in Search, Optimization and MachineLearning, Addison Wesley, MA., 1989.Google Scholar
  5. [5]
    Kirkpatrick, S., Gelatt, C.D. and M. P. Vecchi, “Optimization by simulated annealing”, Science 220, 671–680,1983CrossRefMathSciNetGoogle Scholar
  6. [6]
    Rubinstein, R. Y. “The Cross-Entropy Method for Combinatorial and Continuos Optimization” Methodology and Computing in Applied Probability, 2, 1999.Google Scholar
  7. [7]
    Rubinstein R.Y., “Optimization of Noisy Networks via Cross-Entropy“ 53p, Submitted for publication. http://iew3.technion.ac.il:8080/~ierrr01/PAPERS/noisy.ps
  8. [8]
    Otto Wittner, Bjarne E. Helvik, “Simulating mobile agent based network management using network simulator”, Forth International Symposium on Mobile Agent System (ASA/MA 2000), Zürich, September 2000.Google Scholar
  9. [9]
    Dorigo, M., “Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem”, IEEE Transactions on Evolutionary Computing, Vol. 1, No. 1, April 1997Google Scholar
  10. [10]
    Schoonderwoerd, R. & al., “Ant-Based Load Balancing in Telecommunications Networks”, Adaptive Behavior, Vol. 5, No. 2, 1997Google Scholar
  11. [11]
    Di Caro, G. & al. “AntNet: Distributed Stigmergetic Control for Communications Networks”, Journal of Artificial Intelligence Research, Vol. 9, 1998Google Scholar
  12. [12]
    Schuringa, J., “Packet Routing with Genetically Programmed Mobile Agents”, In Proceedeings of SmartNet 2000, Wienna, September 2000Google Scholar
  13. [13]
    White, T. & al. “Connetion Management using Adaptive Mobile Agents”, Proceedings of 1998 International Conference on Parallel and Distributed Processing Techniques and Applications (PDAPTA’98)Google Scholar
  14. [14]
    DARPA: VINT project, “UCB/LBNL/VINT Network Simulator-ns (version 2)”, http://www.isi.edu/nsnam/ns/
  15. [15]
    Psounis, K., “Active Networks: Applications, Security, Safety, and Architectures”, IEEE Communications Surveys, First Quarter, 1999Google Scholar
  16. [16]
    Reinelt, G. “TSPLIB”, Institut für Angewandte Mathematik, Universität Heidelberg, http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
  17. [17]
    Grover, W.D. & al. “Cycle-oriented distributed preconfiguration: ring-like speed with mesh-like capacity for self-planning network restoration”, IEEE International Conference on Communications, 1998. ICC 98. Conference Record. 1998 Volume: 1, 1998, Page(s): 537–543Google Scholar
  18. [18]
    Philip Heidelberger, “Fast simulation of rare events in queueing and reliability models”, ACM Transactions on odelling and Computer Simulation, 5(1):43–85, Jan. 1995zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Bjarne E. Helvik
    • 1
  • Otto Wittner
    • 1
  1. 1.Department of TelematicsNorwegian University of Science and TechnologyNorway

Personalised recommendations