Skip to main content

Simple Markov Models of the Genetic Algorithm in Classifier Systems: Multi-step Tasks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1996))

Abstract

Michigan-style Classifier Systems use Genetic Algorithms to facilitate rule-discovery. This paper presents a simple Markov model of the algorithm in such systems, with the aim of examining the effects of different types of interdependence between niches in multi-step tasks. Using the model it is shown that the existence of, what is here termed, partner rule variance can have significant and detrimental effects on the Genetic Algorithm’s expected behaviour. Suggestions are made as to how to reduce these effects, making connections with other recent work in the area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Booker, L. (1985) Improving the Performance of Genetic Algorithms in Classifier Systems. In J.J. Grefenstette (ed.) Proceedings of the First International Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum Associates, pp80–93.

    Google Scholar 

  • Bull, L. & Hurst, J. (2000) Self-Adaptive Mutation in ZCS Controllers. In S. Cagnoni, R. Poli, G. Smith, D. Corne, M. Oates, E. Hart, P-L. Lanzi, E. Willem, Y. Li, B. Paechter & T.C Fogarty (eds) Real-World Applications of Evolutionary Computing: Proceedings of the EvoNet Workshops-EvoRob 2000, Springer, pp339–346.

    Google Scholar 

  • Fogel, D.B. (1992) Evolving Artificial Intelligence. PhD dissertation, University of California.

    Google Scholar 

  • Frey, P.W. & Slate, D.J. (1991) Letter Recognition using Holland-style Adaptive Classifiers. Machine Learning 6:161–182.

    Google Scholar 

  • Goldberg, D. & Segrest, P. (1987) Finite Markov Chain Analysis of Genetic Algorithms. In J.J. Grefenstette (ed.) Proceedings of the Second International Conference on Genetic Algorithms, Lawrence Erlbaum, pp1–7.

    Google Scholar 

  • Holland, J.H. (1975) Adaptation in Natural and Artificial Systems, University of Michigan Press.

    Google Scholar 

  • Holland, J.H., Holyoak, K.J., Nisbett, R.E. & Thagard, P.R. (1986) Induction: Processes of Inference, Learning and Discovery. MIT Press.

    Google Scholar 

  • Horn, J., Goldberg, D. & Deb, K. (1994) Implicit Niching in a Learning Classifier System: Nature’s Way. Evolutionary Computation, 2(1):37–65.

    Article  Google Scholar 

  • Kovacs, T. (1999) Strength or Accuracy ? A Comparison of Two Approaches to Fitness Calculation in Learning Classifier Systems. In A.S. Wu (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program, Gecco, pp290–297.

    Google Scholar 

  • Lanzi, P-L. & Colombetti, M. (1999) An Extension to the XCS Classifier System for Stochastic Environments. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela & R.E. Smith (eds) Proceedings of the Genetic and Evolutionary Computation Conference-Gecco’ 99, Morgan Kauffman, pp353–360.

    Google Scholar 

  • Lanzi, P-L. & Wilson, S.W. (1999) Optimal Classifier System Performance in Non-Markov Environments. Tech. Report N99.36 Dipartmento di Eletronica e Infromazione. Politecnico di Milano.

    Google Scholar 

  • Nix, A.E. & Vose, M.D. (1992) Modelling Genetic Algorithms with Markov Chains. Annals of Mathematics and Artificial Intelligence, 5(1):79–88.

    Article  MATH  MathSciNet  Google Scholar 

  • Rechenberg, I. (1973) Evolutionsstrategie; Optimierung technischer Systeme nach Prinzipen der biologischen Evolution. Frommann-Holzboog Verlag.

    Google Scholar 

  • Tomlinson, A. & Bull, L. (1998) A Corporate Classifier System. In A.E. Eiben, T. Bäck, M. Schoenauer & H-P. Schwefel (eds.) Parallel Problem Solving from Nature-PPSN V, Springer, pp. 550–559.

    Google Scholar 

  • Watkins, C. (1989) Learning from Delayed Rewards. PhD Dissertation, Cambridge.

    Google Scholar 

  • Westerdale, T.H. (1999) An Approach to Credit Assignment in Classifier Systems. Complexity 4(2)

    Google Scholar 

  • Wilson, S.W. (1994) ZCS: A Zeroth-level Classifier System. Evolutionary Computation 2(1):1–18.

    Article  Google Scholar 

  • Wilson, S.W. (1995) Classifier Fitness Based on Accuracy. Evolutionary Computation 3(2):149–177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bull, L. (2001). Simple Markov Models of the Genetic Algorithm in Classifier Systems: Multi-step Tasks. In: Luca Lanzi, P., Stolzmann, W., Wilson, S.W. (eds) Advances in Learning Classifier Systems. IWLCS 2000. Lecture Notes in Computer Science(), vol 1996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44640-0_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44640-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42437-6

  • Online ISBN: 978-3-540-44640-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics