Skip to main content

Optimal Möbius Transformations for Information Visualization and Meshing

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2001)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2125))

Included in the following conference series:

Abstract

We give linear-time quasiconvex programming algorithms for finding a Möbius transformation of a set of spheres in a unit ball or on the surface of a unit sphere that maximizes the minimum size of a transformed sphere. We can also use similar methods to maximize the minimum distance among a set of pairs of input points. We apply these results to vertex separation and symmetry display in spherical graph drawing, viewpoint selection in hyperbolic browsing, element size control in conformal structured mesh generation, and brain flat mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Amenta, M. Bern, and D. Eppstein. Optimal point placement for mesh smoothing. J. Algorithms 30(2):302–322, February 1999, cs.CG/9809081.

    Google Scholar 

  2. M. Bern and D. Eppstein. Optimal Möbius transformations for information visualization and meshing. ACM Computing Research Repository, 2001, cs.CG/0101006.

    Google Scholar 

  3. M. Bern and P. E. Plassmann. Mesh generation. Handbook of Computational Geometry, chapter 6, pp. 291–332. Elsevier, 2000.

    Google Scholar 

  4. J.-D. Boissonnat, A. Cérézo, O. Devillers, and M. Teillaud. Output-sensitive construction of the Delaunay triangulation of points lying in two planes. Int. J. Comp. Geom. & Appl. 6(1):1–14, 1996.

    Article  MATH  Google Scholar 

  5. H. Breu and D. G. Kirkpatrick. On the complexity of recognizing intersection and touching graphs of disks. Proc. 3rd Int. Symp. Graph Drawing, pp. 88–98. Springer-Verlag, Lecture Notes in Comput. Sci. 1027, 1995.

    Google Scholar 

  6. G. R. Brightwell and E. R. Scheinerman. Representations of planar graphs. SIAM J. Discrete Math. 6(2):214–229, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. C. Collins and K. Stephenson. A circle packing algorithm. Manuscript, September 1997, http://www.math.utk.edu/~kens/ACPA/ACPA.ps.gz.

  8. T. A. Driscoll and S. A. Vavasis. Numerical conformal mapping using cross-ratios and Delaunay triangulation. SIAM J. Sci. Comput. 19(6):1783–1803, 1998, ftp: ftp://ftp.cs.cornell.edu/pub/vavasis/papers/crdt.ps.gz.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Eppstein. Setting parameters by example. Proc. 40th Symp. Foundations of Computer Science, pp. 309–318. IEEE, October 1999, cs.DS/9907001.

    Google Scholar 

  10. A. Formella and J. Keller. Generalized fisheye views of graphs. Proc. 3rd Int. Symp. Graph Drawing, pp. 243–253. Springer-Verlag, Lecture Notes in Comput. Sci. 1027, 1995, http://www-wjp.cs.uni-sb.de/~formella/dist2.ps.gz.

  11. B. Gärtner and S. Schönherr. Exact primitives for smallest enclosing ellipses. Inf. Proc. Lett. 68:33–38, 1998.

    Article  Google Scholar 

  12. L. H. Howell. Computation of Conformal Maps by Modified Schwarz-Christoffel Transformations. Ph.D. thesis, MIT, 1990, http://www.llnl.gov/CASC/people/howell/lhhphd.ps.gz.

  13. M. K. Hurdal, P. L. Bowers, K. Stephenson, D. W. L. Summers, K. Rehm, K. Shaper, and D. A. Rottenberg. Quasi-conformally flat mapping the human cerebellum. Tech. Rep. FSU-99-05, Florida State Univ., Dept. of Mathematics, 1999, http://www.math.fsu.edu/~aluffi/archive/paper98.ps.gz.

  14. B. Iversen. Hyperbolic Geometry. London Math. Soc. Student Texts 25. Cambridge Univ. Press, 1992.

    Google Scholar 

  15. P. Koebe. Kontaktprobleme der konformen Abbildung. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 88:141–164, 1936.

    Google Scholar 

  16. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geometry for viewing large hierarchies. Proc. Conf. Human Factors in Computing Systems, pp. 401–408. ACM, 1995, http://www.parc.xerox.com/istl/projects/uir/pubs/pdf/ UIR-R-1995-04-Lamping-CHI95-FocusContext.pdf.

  17. J. McKay. Sighting point. sci.math, 20 April 1989, http://www.ics.uci.edu/~eppstein/junkyard/maxmin-angle.html.

  18. B. Mohar. A polynomial time circle packing algorithm. Discrete Math. 117(1–3):257–263, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  19. T. Munzner. Exploring large graphs in 3D hyperbolic space. IEEE Comp. Graphics & Appl. 18(4):18–23, 1997, http://graphics.stanford.edu/papers/h3cga/.

    Article  Google Scholar 

  20. T. Munzner and P. Burchard. Visualizing the structure of the world wide web in 3D hyperbolic space. Proc. VRML’ 95, pp. 33–38. ACM, 1995, http://www.geom.umn.edu/docs/research/webviz/webviz/.

  21. H. Sachs. Coin graphs, polyhedra, and conformal mapping. Discrete Math. 134(1–3):133–138, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  22. W. D. Smith. Accurate circle configurationsand numerical conformal mapping in polynomial time, http://www.neci.nj.nec.com/homepages/wds/braegger. ps. Manuscript, December 1991.

  23. F. Stenger and R. Schmidtlein. Conformal maps via sinc methods. Proc. Conf. Computational Methods in Function Theory, pp. 505–549. World Scientific, 1997, http://www.cs.utah.edu/~stenger/PAPERS/stenger-sinc-comformal-maps.ps.

  24. J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation: Foundations and Applications. North-Holland, 1985.

    Google Scholar 

  25. L. N. Trefethen. Numerical computation of the Schwarz-Christoffel transformation. SIAM J. Sci. Stat. Comput. 1(1):82–102, 1980.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bern, M., Eppstein, D. (2001). Optimal Möbius Transformations for Information Visualization and Meshing. In: Dehne, F., Sack, JR., Tamassia, R. (eds) Algorithms and Data Structures. WADS 2001. Lecture Notes in Computer Science, vol 2125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44634-6_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44634-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42423-9

  • Online ISBN: 978-3-540-44634-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics