Skip to main content

Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic

  • Conference paper
  • First Online:
Computer Science Logic (CSL 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1862))

Included in the following conference series:

Abstract

Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Gödel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Gödel logics by Avron. It is shown that the system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively.

Research supported by the Austrian Science Fund under grant P-12652 MAT

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Avellone, M. Ferrari, P. Miglioli, and U. Moscato. A tableau calculus for Dummett predicate logic. In W. A. Carnielli and I. M. L. D’Ottaviano, editors, Advances in Contemporary Logic and Computer Science, Contemporary Mathematics 235, 135–151. American Mathematical Society, Providence, 1999.

    Google Scholar 

  2. A. Avron. Hypersequents, logical consequence and intermediate logics for concurrency. Ann. Math. Artificial Intelligence, 4:225–248, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Baaz and H. Veith. An axiomatization of quantified propositional Gödel logic using the Takeuti-Titani rule. In S. Buss, P. Hájek, and P. Pudlák, editors, Logic Colloquium’ 98. Proceedings, LNL 13, 74–87. ASL, 2000.

    Google Scholar 

  4. G. Corsi. A cut-free calculus for Dummett’s LC quantified. Z. Math. Logik Grundlag. Math., 35:289–301, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Corsi. Completeness theorem for Dummett’s LC quantified and some of its extensions. Studia Logica, 51:317–335, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Dummett. A propositional calculus with denumerable matrix. J. Symbolic Logic, 24:97–106, 1959.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. M. Gabbay. Decidability of some intuitionistic predicate theories. J. Symbolic Logic, 37:579–587, 1972.

    Article  MATH  MathSciNet  Google Scholar 

  8. K. Gödel. Zum intuitionistischen Aussagenkalkül. Anz. Akad. Wiss. Wien, 69:65–66, 1932.

    Google Scholar 

  9. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.

    MATH  Google Scholar 

  10. A. Horn. Logic with truth values in a linearly ordered Heyting algebra. J. Symbolic Logic, 34:395–408, 1969.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Takano. Another proof of the strong completeness of the intuitionistic fuzzy logic. Tsukuba J. Math, 11:101–105, 1987.

    MATH  MathSciNet  Google Scholar 

  12. G. Takeuti. Proof Theory. North-Holland, Amsterdam, 2nd ed., 1987.

    MATH  Google Scholar 

  13. G. Takeuti and S. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory. J. Symbolic Logic, 49:851–866, 1984.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baaz, M., Zach, R. (2000). Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic. In: Clote, P.G., Schwichtenberg, H. (eds) Computer Science Logic. CSL 2000. Lecture Notes in Computer Science, vol 1862. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44622-2_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-44622-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67895-3

  • Online ISBN: 978-3-540-44622-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics