Skip to main content

Action Contraction

  • Conference paper
  • First Online:
CONCUR 2000 — Concurrency Theory (CONCUR 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1877))

Included in the following conference series:

Abstract

The question we consider in this paper is: “When can a combination of fine-grain execution steps be contracted into an atomic action execution”? Our answer is basically: “When no observer can see the difference.” This is worked out in detail by defining a notion of coupled split/atomic simulation refinement between systems which differ in the atomicity of their actions, and proving that this collapses to Parrow and Sjödin’s coupled similarity when the systems are composed with an observer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Aceto and M. C. B. Hennessy. Towards action-refinement in process algebras. Information and Computation, 103:204–269, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. L. Aceto and M. C. B. Hennessy. Adding action refinement to a finite process algebra. Information and Computation, 115:179–247, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University Press, 1990.

    Google Scholar 

  4. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Computer Networks and ISDN Systems, 14:25–59, 1987.

    Article  Google Scholar 

  5. G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Comput. Sci., 59:25–84, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Brinksma, B. Jonsson, and F. Orava. Refining interfaces of communicating systems. In S. Abramsky and T. S. E. Maibaum, eds., TAPSOFT’ 91, Volume 2, vol. 494 of Lecture Notes in Computer Science, pp. 297–312. Springer-Verlag, 1991.

    Google Scholar 

  7. F. Cherief and P. Schnoebelen. τ-bisimulation and full abstraction for refinement of actions. Information Processing Letters, 40:219–222, 1991.

    Article  MATH  Google Scholar 

  8. W. R. Cleaveland, ed. Concur’ 92, vol. 630 of Lecture Notes in Computer Science. Springer-Verlag, 1992.

    MATH  Google Scholar 

  9. R. Gerth, R. Kuiper, and J. Segers. Interface refinement in reactive systems. In W. R. Cleaveland [8], pp. 77–93.

    Chapter  Google Scholar 

  10. R. J. van Glabbeek. The linear time-branching time spectrum II: The semantics of sequential systems with silent moves. In E. Best, ed., Concur’ 93, vol. 715 of Lecture Notes in Computer Science, pp. 66–81. Springer-Verlag, 1993.

    Google Scholar 

  11. R. J. van Glabbeek and F. W. Vaandrager. Petri Net models for algebraic theories of concurrency. In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven, eds., PARLE — Parallel Architectures and Languages Europe, Volume II: Parallel Languages, vol. 259 of Lecture Notes in Computer Science, pp. 224–242. Springer-Verlag, 1987.

    Google Scholar 

  12. R. J. van Glabbeek and F. W. Vaandrager. The difference between splitting in n and n + 1. Information and Computation, 136(2):109–142, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. J. vanGlabbeek and W. P. Weijland. Branching time and abstraction in bisimulation semantics. J. ACM, 43(3):555–600, May 1996.

    Google Scholar 

  14. R. Gorrieri and C. Laneve. Split and ST bisimulation semantics. Information and Computation, 116(1):272–288, Jan. 1995.

    Google Scholar 

  15. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

    Google Scholar 

  16. S. Katz. Refinement with global equivalence proofs in temporal logic. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 29:59–78, 1997.

    Google Scholar 

  17. L. Lamport. The mutual exclusion problem, part I — a theory of interprocess communication. J. ACM, 33(2):313–326, Apr. 1986.

    Google Scholar 

  18. R. Langerak. Transformations and Semantics for LOTOS. PhD thesis, University of Twente, Nov. 1992.

    Google Scholar 

  19. N. A. Lynch, M. Merritt, W. E. Weihl, and A. Fekete. Atomic Transactions. Morgan Kaufmann, San Mateo, 1994.

    Google Scholar 

  20. R. Milner. A Calculus of Communicating Systems, vol. 92 of Lecture Notes in Computer Science. Springer-Verlag, 1980.

    MATH  Google Scholar 

  21. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

    Google Scholar 

  22. U. Nestmann and B. Pierce. Decoding choice encodings. In U. Montanari and V. Sassone, eds., Concur’ 96: Concurrency Theory, vol. 1119 of Lecture Notes in Computer Science, pp. 179–194. Springer-Verlag, 1996.

    Google Scholar 

  23. J. Parrow and P. Sjödin. Multiway synchronization verified with coupled simulation. In W. R. Cleaveland [8], pp. 518–533.

    Chapter  Google Scholar 

  24. J. Parrow and P. Sjödin. The complete axiomatization of Cs-congruence. In R. Enjalbert, E. W. Mayr, and K. W. Wagner, s., STACS 94, vol. 775 of Lecture Notes in Computer Science, pp. 557–568. Springer-Verlag, 1994.

    Google Scholar 

  25. A. Rensink. A theory of action contraction, 2000. Full version (including proofs): http://www.cs. utwente.nl/~rensink/contract.ps.gz.

  26. A. Rensink and R. Gorrieri. Vertical implementation. Information and Computation, 2000 (to appear). Extended version of “Vertical Bisimulation” (TAPSOFT’ 97); see also Hildesheimer Informatik-Bericht 9/98, University of Hildesheim.

    Google Scholar 

  27. W. Vogler. Failures semantics based on interval semiwords is a congruence for refinement. Distributed Computing, 4:139–162, 1991.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rensink, A. (2000). Action Contraction. In: Palamidessi, C. (eds) CONCUR 2000 — Concurrency Theory. CONCUR 2000. Lecture Notes in Computer Science, vol 1877. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44618-4_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-44618-4_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67897-7

  • Online ISBN: 978-3-540-44618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics