On Algorithms and Interaction

  • Jan van Leeuwen
  • Jiří Wiedermann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)


Many IT-systems behave very differently from classical machine models: they interact with an unpredictable environment, they never terminate, and their behavior changes over time. Wegner [25, 26] (see also [28]) recently argued that the power of interaction goes beyond the Church-Turing thesis. To explore interaction from a computational viewpoint, we describe a generic model of an ‘interactive machine’ which interacts with the environment using single streams of input and output signals over a simple alphabet. The model uses ingredients from the theory of ω-automata. Viewing the interactive machines as transducers of infinite streams of signals, we show that their interactive recognition and generation capabilities are identical. It is also shown that, in the given model, all interactively computable functions are limit-continuous.


Turing Machine Partial Function Computable Function Input Symbol Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Broy. A logical basis for modular software and systems engineering, in: B. Rovan (Ed.), SOFSEM’98: Theory and Practice of Informatics, Proc. 25th Conference on Current Trends, Lecture Notes in Computer Science, Vol. 1521, Springer-Verlag, Berlin, 1998, pp. 19–35.Google Scholar
  2. 2.
    R.S. Cohen, A.Y. Gold. ω-Computations on Turing machines, Theor. Comput. Sci. 6 1978 1–23.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Engelfriet, H.J. Hoogeboom. X-automata on ω-words, Theor. Comput. Sci. 110 1993 1–51.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    D.Q. Goldin. Persistent Turing machines as a model of interactive computation, in: K-D. Schewe and B. Thalheim (Eds.), Foundations of Information and Knowledge Systems, Proc. First Int. Symposium (FoIKS 2000), Lecture Notes in Computer Science, vol. 1762, Springer-Verlag, Berlin, 2000, pp. 116–135.CrossRefGoogle Scholar
  5. 5.
    D. Goldin, P. Wegner. Persistence as a form of interaction, Techn. Rep. CS-98-07, Dept. of Computer Science, Brown University, Providence, RI, 1998.Google Scholar
  6. 6.
    D. König. Sur les correspondances multivoques des ensembles, Fundam. Math. 8 1926 114–134.zbMATHGoogle Scholar
  7. 7.
    D. König. Über eine Schlussweise aus dem Endlichen ins Unendliche (Punktmengen.-Kartenfärben.-Verwantschaftsbeziehungen.-Schachspiel), Acta Litt. Sci. (Sectio Sci. Math.) 3 1927 121–130.Google Scholar
  8. 8.
    S. Kosub. Persistent computations, Technical Report No. 217, Institut für Informatik, Julius-Maximilians-Universität Würzburg, 1998.Google Scholar
  9. 9.
    Z. Manna, A. Pnueli. Models for reactivity, Acta Informatica 30 1993 609–678.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. Milner. A calculus of communicating systems, Lecture Notes in Computer Science, Vol. 92, Springer-Verlag, Berlin, 1980.zbMATHGoogle Scholar
  11. 11.
    R. Milner. Elements of interaction, C.ACM 36:1 1993 78–89.Google Scholar
  12. 12.
    A. Pnueli. Applications of temporal logic to the specification and verification of reactive systems: a survey of current trends, in: J.W. de Bakker, W.-P. de Roever and G. Rozenberg, Current Trends in Concurrency, Lecture Notes in Computer Science, Vol. 224, Springer-Verlag, Berlin, 1986, pp. 510–585.CrossRefGoogle Scholar
  13. 13.
    A. Pnueli. Specification and development of reactive systems, in: H.-J. Kugler (Ed.), Information Processing 86, Proceedings IFIP 10th World Computer Congress, Elsevier Science Publishers (North-Holland), Amsterdam, 1986, pp. 845–858.Google Scholar
  14. 14.
    M. Prasse, P. Rittgen. Why Church’s Thesis still holds. Some notes on Peter Wegner’s tracts on interaction and computability, The Computer Journal 41 1998 357–362.zbMATHCrossRefGoogle Scholar
  15. 15.
    L. Staiger. ω-Languages, in: G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 3: Beyond Words, Chapter 6, Springer-Verlag, Berlin, 1997, pp. 339–387.Google Scholar
  16. 16.
    W. Thomas. Automata on infinite objects, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science, Vol. B: Models and Semantics, Elsevier Science Publishers, Amsterdam, 1990, pp. 135–191.Google Scholar
  17. 17.
    W. Thomas. Languages, automata, and logic, in: G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 3: Beyond Words, Chapter, Springer-Verlag, Berlin, 1997, pp. 389–455.Google Scholar
  18. 18.
    B.A. Trakhtenbrot. Automata and their interaction: definitional suggestions, in: G. Ciobanu and G. Păun (Eds.), Fundamentals of Computation Theory, Proc. 12th International Symposium (FCT’99), Lecture Notes in Computer Science, Vol. 1684, Springer-Verlag, Berlin, 1999, pp. 54–89.CrossRefGoogle Scholar
  19. 19.
    J. van Leeuwen, J. Wiedermann. A computational model of interaction, Technical Report, Dept of Computer Science, Utrecht University, Utrecht, 2000.Google Scholar
  20. 20.
    J. van Leeuwen, J. Wiedermann. Breaking the Turing barrier: the case of the Internet, Technical Report, Inst. of Computer Science, Academy of Sciences, Prague, 2000.Google Scholar
  21. 21.
    J. van Leeuwen, J. Wiedermann. Extending the Turing Machine Paradigm, in: B. Engquist and W. Schmidt (Eds.), Mathematics Unlimited-2001 and Beyond, Springer-Verlag, Berlin, 2000 (to appear).Google Scholar
  22. 22.
    K. Wagner, L. Staiger. Recursive ω-languages, in: M. Karpinsky (Ed.), Fundamentals of Computation Theory, Proc. 1977 Int. FCT-Conference, Lecture Notes in Computer Science, Vol. 56, Springer-Verlag, Berlin, 1977, pp. 532–537.Google Scholar
  23. 23.
    P. Wegner. Interactive foundations of object-based programming, IEEE Computer 28:10 1995 70–72.Google Scholar
  24. 24.
    P. Wegner. Interaction as a basis for empirical computer science, Comput. Surv. 27 1995 45–48.CrossRefGoogle Scholar
  25. 25.
    P. Wegner. Why interaction is more powerful than algorithms, C.ACM 40 1997 80–91.CrossRefGoogle Scholar
  26. 26.
    P. Wegner. Interactive foundations of computing, Theor. Comp. Sci. 192 1998 315–351.zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    P. Wegner, D. Goldin. Co-inductive models of finite computing agents, in: B. Jacobs and J. Rutten (Eds.), CMCS’99-Coalgebraic Methods in Computer Science, TCS: Electronic Notes in Theoretical Computer Science, Vol. 19, Elsevier, 1999.Google Scholar
  28. 28.
    P. Wegner, D. Goldin. Interaction as a framework for modeling, in: P. Chen et al. (Eds.), Conceptual Modeling-Current Issues and Future Directions, Lecture Notes in Computer Science, Vol. 1565, Springer-Verlag, Berlin, 1999, pp 243–257.Google Scholar
  29. 29.
    P. Wegner, D.Q. Goldin. Interaction, comput ability, and Church’s thesis, The Computer Journal 1999 (to appear).Google Scholar
  30. 30.
    G. Winskel. The formal semantics of programming languages: an introduction, The MIT Press, Cambridge (Mass.), 1993.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Jan van Leeuwen
    • 1
  • Jiří Wiedermann
    • 2
  1. 1.Department of Computer ScienceUtrecht UniversityCH Utrechtthe Netherlands
  2. 2.Institute of Computer Science, Academy of Sciences of the Czech RepublicPrague 8Czech Republic

Personalised recommendations