Advertisement

The Infinite Versions of LogSpace ≠ P Are Consistent with the Axioms of Set Theory

  • Grégory Lafitte
  • Jacques Mazoyer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)

Abstract

We consider the infinite versions of the usual computational complexity questions LogSpace ≟ P, NLogSpace ≟ P by studying the comparison of their descriptive logics on infinite partially ordered structures rather than restricting ourselves to finite structures. We show that the infinite versions of those famous class separation questions are consistent with the axioms of set theory and we give a sufficient condition on the complexity classes in order to get other such relative consistency results.

Keywords

Partial Order Point Operator Turing Machine Complexity Class Logical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul, M.Y. Vardi, and V. Vianu, Fixpoint logics, relational machines, and computational complexity, Proceedings of the 7th IEEE Symposium on Logic in Computer Science, 1992, pp. 156–168.Google Scholar
  2. 2.
    H.-D. Ebbinghaus and J. Flum, Finite model theory, Springer-Verlag, Berlin, 1995.zbMATHGoogle Scholar
  3. 3.
    P. Erdős, A. Hajnal, A. Máté, and R. Rado, Combinatorial set theory: Partition relations for cardinals, North-Holland, Amsterdam, 1975.Google Scholar
  4. 4.
    L. Fortnow, S. Kurtz, and D. Whang, The infinite version of an open communication complexity problem is independent of the axioms of set theory, SIGACT News 25 (1994), no. 1, 87–89.CrossRefGoogle Scholar
  5. 5.
    M. Furst, J. Saxe, and M. Sipser, Parity, circuits and the polynomial time hierarchy, Mathematical Systems Theory 17 (1984), 13–27.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Goldstern and S. Shelah, A partial order where all monotone maps are definable, Fundamenta Mathematicae 152 (1997), 255–265.zbMATHMathSciNetGoogle Scholar
  7. 7.
    -, Order polynomially complete lattices must be large, Algebra Universalis (1998), to appear.Google Scholar
  8. 8.
    Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, Annals of Pure and Applied Logic 32 (1986), 265–280.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. D. Hamkins and A. Lewis, Infinite time turing machines, preprint, June 1997.Google Scholar
  10. 10.
    T. Jech, Set theory, Academic Press, New York, 1978.Google Scholar
  11. 11.
    A. Kanamori, The higher infinite, Springer Verlag, 1994.Google Scholar
  12. 12.
    A. Kanamori and M. Magidor, The evolution of large cardinal axioms in set theory, Higher Set Theory Gert H. Muller and Dana S. Scott, eds., Lecture Notes in Mathematics, vol. 669, Springer Verlag, Berlin, 1978, pp. 99–275.CrossRefGoogle Scholar
  13. 13.
    A. Miller, On the length of Borel hierarchies, Annals of Mathematical Logic 16 (1979), 233–267.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    W. Richter, Recursively mahlo ordinals and inductive definitions, Logic Colloquium’ 69 R. O. Gandy and C. E. M. Yates, (eds.), North-Holland, 1971, pp. 273-288.Google Scholar
  15. 15.
    M. Sipser, Borel sets and circuit complexity, Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 1983, pp. 61–69.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Grégory Lafitte
    • 1
  • Jacques Mazoyer
    • 1
  1. 1.Laboratoire de l’Informatique du ParallélismeEcole Normale Supérieure de LyonLyon Cedex 07France

Personalised recommendations