Advertisement

Formal Series over Algebras

  • Werner Kuich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)

Abstract

We define two types of series over Σ-algebras: formal series and, as a special case, term series. By help of term series we define systems (of equations) that have tuples of formal series as solutions. We then introduce finite automata and polynomial systems and show that they are mechanisms of equal power. Morphisms from formal series into power series yield combinatorial results.

Keywords

Normal Form Formal Power Series Formal Series Polynomial System Finite Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1999) 1–33.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Courcelle, B.: Equivalences and transformations of regular systems—Applications to recursive program schemes and grammars. Theor. Comp. Sci. 42(1986) 1–122.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Courcelle, B.: Basic notions of universal algebra for language theory and graph grammars. Theoretical Computer Science 163(1996) 1–54.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Goldstern, M.: Vervollständigung von Halbringen. Diplomarbeit, Technische Universität Wien, 1985.Google Scholar
  5. 5.
    Harary F., Prins G., Tutte W. T.: The number of plane trees. Indagationes Mathematicae 26(1964) 319–329.MathSciNetGoogle Scholar
  6. 6.
    Karner, G.: On limits in complete semirings. Semigroup Forum 45(1992) 148–165.zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Klarner D. A.: Correspondences between plane trees and binary sequences. J. Comb. Theory 9(1970) 401–411.zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Kuich, W.: Uber die Entropie kontext-freier Sprachen. Habilitationsschrift, Technische Hochschule Wien, 1970. English translation: On the entropy of context-free languages. Inf. Control 16(1970) 173–200.Google Scholar
  9. 9.
    Kuich, W.: Languages and the enumeration of planted plane trees. Indagationes Mathematicae 32(1970) 268–280.MathSciNetGoogle Scholar
  10. 10.
    Kuich, W.: Semirings and formal power series: Their relevance to formal languages and automata theory. In: Handbook of Formal Languages Eds.: G. Rozenberg and A. Salomaa, Springer, 1997, Vol. 1, Chapter 9, 609–677.Google Scholar
  11. 11.
    Kuich, W.: Formal power series over trees. In: Proceedings of the 3rd International Conference Developments in Language Theory S. Bozapalidis, ed., Aristotle University of Thessaloniki, 1998, pp. 61–101.Google Scholar
  12. 12.
    Kuich, W.: Pushdown tree automata, algebraic tree systems and algebraic tree series. Information and Computation, to appear.Google Scholar
  13. 13.
    Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs on Theoretical Computer Science, Vol. 5. Springer, 1986.Google Scholar
  14. 14.
    Mezei, J., Wright, J. B.: Algebraic automata and context-free sets. Inf. Control 11(1967) 3–29.zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Stanley, R. P.: Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999.Google Scholar
  16. 16.
    Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on Computer Science, Vol. 25. Springer, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Werner Kuich
    • 1
  1. 1.Technische Universität WienWien

Personalised recommendations