Advertisement

Alternating and Empty Alternating Auxiliary Stack Automata

  • Markus Holzer
  • Pierre McKenzie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)

Abstract

We consider variants of alternating auxiliary stack automata and characterize their computational power when the number of alternations is bounded by a constant or unlimited. In this way we get new characterizations of NP, the polynomial hierarchy, PSpace, and bounded query classes like NL NP[1]〉 and Θ2 P = P NP[O(logn)], in a uniform framework.

Keywords

Turing Machine Polynomial Hierarchy Nondeterministic Automaton Runtime Restriction Universal Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–133, 1981.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S.A. Cook. Characterizations of pushdown machines in terms of time-bounded computers. Journal of the ACM, 18(1):4–18, 1971.zbMATHCrossRefGoogle Scholar
  3. 3.
    O. H. Ibarra. Characterizations of some tape and time complexity classes of Turing machines in terms of multihead and auxiliary stack automata. Journal of Computer and System Sciences, 5(2):88–117, 1971.zbMATHMathSciNetGoogle Scholar
  4. 4.
    N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on Computing, 17(5):935–938, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    B. Jenner and B. Kirsig. Characterizing the polynomial hierarchy by alternating auxiliary pushdown automata. In Proceedings of the 5th Annual Symposium on Theoretical Computer Science, number 294 in LNCS, pages 118–125, Bordeaux, France, 1988. Springer.Google Scholar
  6. 6.
    R. Ladner and N. Lynch. Relativization of questions about log space computability. Mathematical Systems Theory, 10:19–32, 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack automata. SIAM Journal on Computing, 13(1):135–155, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. E. Ladner, L. J. Stockmeyer, and R. J. Lipton. Alternation bounded auxiliary pushdown automata. Information and Control, 62:93–108, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    K.-J. Lange and K. Reinhardt. Empty alternation. In Proceedings of the 9th Conference on Mathematical Foundations of Computer Science, number 841 in LNCS, pages 494–503, Kosice, Slovakia, 1994. Springer.Google Scholar
  10. 10.
    W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and probabilistic computations. Journal of Computer and System Sciences, 28(2):216–230, 1984.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    I. H. Sudborough. On the tape complexity of deterministic context-free languages. Journal of the ACM, 25(3):405–414, 1978.zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26(3):279–284, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    K. Wagner and G. Wechsung. Computational Complexity. Mathematics and its applications (East Europeans series). VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.Google Scholar
  14. 14.
    K. W. Wagner. Bounded query classes. SIAM Journal on Computing, 19(5):833–846, 1990.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Markus Holzer
    • 1
  • Pierre McKenzie
    • 1
  1. 1.Département d’I.R.O.Université de MontréalMontréal (Québec)Canada

Personalised recommendations