Periodic-Like Words

  • Arturo Carpi
  • Aldo de Luca
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)


We introduce the notion of periodic-like word. It is a word whose longest repeated prefix is not right special. Some different characterizations of this concept are given. We derive a new condition ensuring that the greatest common divisor of two periods of a word is a period, too. Then we characterize periodic-like words having the same set of proper boxes, in terms of the important notion of root-conjugacy. Finally, some new uniqueness conditions for words, related to the maximal box theorem are given.


Special Factor Minimal Period Previous Proposition Great Common Divisor Empty Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carpi, A., de Luca, A.: Words and Repeated Factors. Séminaire Lotharingien de Combinatoire B42l (1998) 24 pp.Google Scholar
  2. 2.
    Carpi, A., de Luca, A.:Words and Special Factors. Preprint 98/33, Dipartimento di Matematica dell’Universitá di Roma “La Sapienza” (1998), Theor. Comput. Sci. (to appear)Google Scholar
  3. 3.
    Carpi, A., de Luca, A.: Repetitions and Boxes in Words and Pictures. In: Karhumäki, J., Maurer, H., Pčaun, G., Rozenberg, G. (eds.): Jewels Are Forever, Springer-Verlag, Berlin (1999) 295–306Google Scholar
  4. 4.
    Carpi, A., de Luca, A.: Semiperiodic words and root-conjugacy. Preprint 10/2000, Dipartimento di Matematica dell’Universitá di Roma “La Sapienza” (2000)Google Scholar
  5. 5.
    de Luca, A.: On the Combinatorics of Finite Words. Theor. Comput. Sci. 218 (1999) 13–39zbMATHCrossRefGoogle Scholar
  6. 6.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading, MA (1983)zbMATHGoogle Scholar
  7. 7.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Arturo Carpi
    • 1
  • Aldo de Luca
    • 2
  1. 1.Istituto di Cibernetica del CNRArco Felice(NA)Italy
  2. 2.Dipartimento di Matematica dell’Universitá di Roma ‘La Sapienza’RomaItaly

Personalised recommendations