A Compositional Model for Confluent Dynamic Data-Flow Networks

  • Frank S. de Boer
  • Marcello M. Bonsangue
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1893)


We introduce a state-based language for programming dynamically changing networks which consist of processes that communicate asynchronously. For this language we introduce an operational semantics and a notion of observable which includes both partial correctness and absence of deadlock. Our main result is a compositional characterization of this notion of observable for a confluent sub-language.


Internal State Compositional Model Operational Semantic Channel Variable Compositional Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Agha, I. Mason, S. Smith, and C. Talcott. A foundation for actor computation Journal of Functional Programming, 1(1):1–69, 1993.MathSciNetGoogle Scholar
  2. 2.
    R. Amadio, I. Castellani, and D. Sangiorgi. On Bisimulations for the Asynchronous π-calculus. Theoretical Computer Science, 195:291–324, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    F. Arbab, F.S. de Boer, and M.M. Bonsangue. A coordination language for mobile components. In Proc. of SAC 2000, pp. 166–173, ACM press, 2000.Google Scholar
  4. 4.
    F. Arbab, I. Herman, and P. Spilling. An overview of Manifold and its implementation. Concurrency: Practice and Experience, 5(1):23–70, 1993.CrossRefGoogle Scholar
  5. 5.
    F.S. de Boer. Reasoning about asynchronous communication in dynamically evolving object structures. To appear in Theoretical Computer Science, 2000.Google Scholar
  6. 6.
    M. Broy. Equations for describing dynamic nets of communicating systems. In Proc. 5th COMPASS workshop, vol. 906 of LNCS, pp. 170–187, 1995.Google Scholar
  7. 7.
    L. Cardelli and A.D. Gordon. Mobile ambients. In Proc. of Foundation of Software Science and Computational Structures, vol. 1378 of LNCS, pp. 140–155, 1998.CrossRefGoogle Scholar
  8. 8.
    E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.Google Scholar
  9. 9.
    M. Falaschi, M. Gabbrielli, K. Marriot, and C. Palamidessi. Confluence in concurrent constraint programming. In Theoretical Computer Science, 183(2), 1997.Google Scholar
  10. 10.
    C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join calculus. In Proc. POPL’96, pp. 372–385, 1996.Google Scholar
  11. 11.
    R. Grosu and K. Stølen. A model for mobile point-to-point data-flow networks without channel sharing. In Proc. AMAST’96, LNCS, 1996.Google Scholar
  12. 12.
    G.J. Holzmann. The model checker SPIN IEEE Transactions on Software Engineering 23:5, 1997.Google Scholar
  13. 13.
    G. Kahn. The semantics of a simple language for parallel programming. In IFIP74 Congress, North Holland, Amsterdam, 1974.Google Scholar
  14. 14.
    He Jifeng, M.B. Josephs, and C.A.R. Hoare. A theory of synchrony and asynchrony. In Proc. IFIP Conf. on Programming Concepts and Methods, 1990.Google Scholar
  15. 15.
    B. Jonsson. A fully abstract trace model for dataflow and asynchronous networks. Distributed Computing, 7:197–212, 1994.zbMATHCrossRefGoogle Scholar
  16. 16.
    R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and II. Information and Computation 100(1):1–77, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    E.-R. Olderog and C.A.R. Hoare. Specification-oriented semantics for communicating processes. Acta Informatica 23:9–66, 1986.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Frank S. de Boer
    • 1
  • Marcello M. Bonsangue
    • 2
  1. 1.Utrecht UniversityThe Netherlands
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations