Skip to main content

Non-equilibrium Physics of Magnetic Solids: Time Dependent Changes of Magnetism

  • Conference paper
  • First Online:
Band-Ferromagnetism

Part of the book series: Lecture Notes in Physics ((LNP,volume 580))

  • 1327 Accesses

Abstract

The characteristic times for reaching from the initial non-equilibrium state the equilibrium are analyzed for the electrons, the magnetization, magnetic reorientation, magnetic nanostructures and magnetic moments. In transition metals, excited d-electrons and itinerant spins have an ultrafast dynamic and relax on a similar time scale of the order of 10 fs or more. In contrast, changes of magnetism involving spinlattice coupling like the reorientation of the magnetization at surfaces, interfaces and of domains may require times of the order of 100 ps or more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Hertel, E. Knoesel, M. Wolf, and G. Ertl: Phys. Rev. Lett. 76, 2, 535 (1996); M. Aeschlimann, M. Bauer, S. Pawlik: Chem. Phys. 205, 127 (1996).

    Article  ADS  Google Scholar 

  2. F. Passek, M. Donath, K. Ertl, and V. Dose: Phys. Rev. Lett. 75, 2746 (1995); M. Aeschlimann, M. Bauer, S. Pawlik, R. Burgemeister, D. Oberli, W. Weber, and H. C. Siegmann: to be published (1997); F. Meier, A. Vaterlaus, M. Aeschlimann, M. Lutz, D. Guarisco, F. Milani, and H.C. Siegmann: J. Magn. Magn. Mater. 93, 523 (1991)

    Article  ADS  Google Scholar 

  3. W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor: Phys. Rev. B 46, 13592 (1992)

    Article  ADS  Google Scholar 

  4. P. G. Allen: Phys. Rev. Lett. 59, 1460 (1987)

    Article  ADS  Google Scholar 

  5. E. Beaurepaire, J.-C. Merle, A. Daunois, J.-Y. Bigot: Phys. Rev. Lett. 76, 4250 (1996)

    Article  ADS  Google Scholar 

  6. J. Hohlfeld, E. Matthias, R. Knorren and K.H. Bennemann: Phys. Rev. Lett. 78, 4861 (1997)

    Article  ADS  Google Scholar 

  7. J. Hubbard: Phys. Rev. B 20, 4584 (1979)

    Article  ADS  Google Scholar 

  8. R. Knorren: thesis, FU Berlin (2000)

    Google Scholar 

  9. R. Knorren, K.H. Bennemann, R. Burgermeister, and M. Aeschlimann: Phys. Rev. B 61, 9427 (2000)

    Article  ADS  Google Scholar 

  10. R. Brinzanik, P. Jensen, K.H. Bennemann: Nano Structured Mat. 12, 9 (1999)

    Article  Google Scholar 

  11. R. Brinzanik, P. Jensen, K.H. Bennemann: preprint FUB (2000)

    Google Scholar 

  12. K.H. Bennemann: Ultrafast Spin Dynamics, Revista Mexicana de Fisica 44, 533 (1998)

    Google Scholar 

  13. J.L. Morán-López, K.H. Bennemann and M. Avignon, Phys. Rev. B 23, 5978 (1981); the magnetization is approximately given within a Ising-like model by M ~ (c+ì+cμ+-c_μ_), where c+ is the probability to find a magnetic moment μ+ pointing in the direction of the magnetization and c_ and μ_ are correspondingly defined. Generally, μ+ ≠ μ_ and perturbations cause changes μ+ → μ-, for example, and thus a decrease of M due to directional disorder as well as due to a decrease in the magnitude of the magnetic moments.

    Article  ADS  Google Scholar 

  14. W. Hübner and K.H. Bennemann: Phys. Rev. B 53, 1 (1996)

    Article  Google Scholar 

  15. H.J. Siegmann et al.: private communication; s. also D.R. Penn, S.P Apell, and S.M. Girvin: Phys. Rev. B 32, 7753 (1985). M. Aeschlimann, M. Bauer, S. Pawlik, W. Weber, R. Burgermeister, D. Oberli und H.C. Siegmann: Phys. Rev. Lett. 79, 5158 (1997).

    Article  Google Scholar 

  16. The susceptibility tensor xijl(M) may be expanded into even and odd terms in M, s. U. Pustogowa, W. Hübner, and K.H. Bennemann: Phys. Rev. B 48, 8607 (1993): One may write xijl(M) = xijl(0)+xijlkMk+.... It is then straightforward to get ΔI - α M.

    Article  ADS  Google Scholar 

  17. W. Hübner and K.H. Bennemann: Phys. Rev. B 40, 5973 (1989).

    Article  ADS  Google Scholar 

  18. U. Conrad: thesis, FUB (1999); V. Jähnke, thesis: FUB (2000); J. Güdde, U. Conrad, V. Jähnke, J. Hohlfeld, and E. Matthias: Phys. Rev. B 59, R 6608 (1999); U. Conrad, J. Güdde, V. Jähnke, E. Matthias: J. Appl. Physics B 68, 511 (1999); J. Hohlfeld, J. Güdde, U. Conrad, O. Dühr, G. Korn, E. Matthias: J. Appl. Physics B 68, 505 (1999); J. Hohlfeld, J. Güdde and E. Matthias: to be published.

    Google Scholar 

  19. J. Hohlfeld: thesis FU Berlin, (1998)

    Google Scholar 

  20. E. Matthias: private communications, Oct. (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bennemann, K.H. (2001). Non-equilibrium Physics of Magnetic Solids: Time Dependent Changes of Magnetism. In: Baberschke, K., Nolting, W., Donath, M. (eds) Band-Ferromagnetism. Lecture Notes in Physics, vol 580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44610-9_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-44610-9_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42389-8

  • Online ISBN: 978-3-540-44610-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics