Skip to main content

Computational Investigation of Hemispheric Specialization and Interactions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

Current understanding of the origins of cerebral specializa- tion is fairly limited. This chapter summarizes some recent work devel- oping and studying neural models that are intended to provide a bet- ter understanding of this issue. These computational models focus on emergent lateralization and also hemispheric interactions during recovery from simulated cortical lesions. The models, consisting of corresponding left and right cortical regions connected by the corpus callosum, handle tasks such as word reading and letter classification. The results demon- strate that it is relatively easy to simulate cerebral specialization and to show that the intact, non-lesioned hemisphere is often partially respon- sible for recovery. This work demonstrates that computational models can be a useful supplement to human and animal studies of hemispheric relations, and has implications for better understanding of modularity and robustness in neurocomputational systems in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anninos P, et al. A Computer Model for Learning Processes and the Role of the Cerebral Commissures, Biol. Cybern, 50, 1984, 329–336.

    Article  MATH  Google Scholar 

  2. Anninos P & Cook N. Neural Net Simulation of the Corpus Callosum, Intl. J. Neurosci., 38, 1988, 381–391.

    Google Scholar 

  3. Bates E, Thal D & Janowsky J. Early Language Development and Its Neural Correlates, in S. Segalowitz & I. Rabin (eds.), Handbook of Neuropsychology, 7, 1992, 69–110.

    Google Scholar 

  4. Belin P, Van Eeckhout P, Zilbovicius M, et al. Recovery From Nonfluent Aphasia After Melodic Intonation Therapy: A PET Study, Neurol., 47, 1996, 1504–1511.

    Google Scholar 

  5. Berlucchi G. Two Hemispheres But One Brain, Behav Brain Sci, 6, 1983, 171–3.

    Google Scholar 

  6. Bowler J, Wade J, Jones B, et al. Contribution of Diaschisis to the Clinical Deficit in Human Cerebral Infarction, Stroke, 26, 1995, 1000–1006.

    Google Scholar 

  7. Burgess C & Lund K. Modeling Cerebral Asymmetries in High-Dimensional Semantic Space, in Right Hemisphere Language Comprehension, M. Beeman & C. Chiarello (eds.), Erlbaum, 1998, 215–244.

    Google Scholar 

  8. Cappa S, Perani D, Grassi F, et al. A PET Follow-UP Study of Recovery After Stroke in Acute Aphasics, Brain and Language, 56, 1997, 55–67.

    Article  Google Scholar 

  9. Caselli R. Bilateral Impairment of Somesthetically Mediated Object Recognition in Humans, Mayo Clin. Proc., 66, 1991, 357–364.

    Google Scholar 

  10. Cook N. The Brain Code, Methuen, 1986.

    Google Scholar 

  11. Cook N & Beech A. The Cerebral Hemispheres and Bilateral Neural Nets, Int. J. Neurosci., 52, 1990, 201–210.

    Article  Google Scholar 

  12. Davidson R & Hugdahl K (eds.), Brain Asymmetry, MIT Press, 1995.

    Google Scholar 

  13. Denenberg V. Micro and Macro Theories of the Brain, Behav. Brain Sci., 6, 1983, 174–178.

    Article  Google Scholar 

  14. Dennis M. & Whitaker H. Language Acquisition Following Hemidecortication. Linguistic Superiority of Left Over Right Hemisphere, Brain and Language, 3, 1976, 404–433.

    Google Scholar 

  15. Feeney D & Baron J. Diaschisis, Stroke, 17, 1986, 817–830.

    Google Scholar 

  16. Ferbert A, et al. Interhemispheric Inhibition of the Human Motor Cortex, J. Physiol., 453, 1992, 525–546.

    Google Scholar 

  17. Fink G, Driver J, Rorden C, et al. Neural Consequences of Competing Stimuli in Both Visual Hemifields, Annals of Neurology, 47, 2000, 440–446.

    Article  Google Scholar 

  18. Geschwind N & Galaburda A. Cerebral Lateralization, MIT Press, 1987.

    Google Scholar 

  19. Goodall S, Reggia J, et al. A Computational Model of Acute Focal Cortical Lesions, Stroke, 28, 1997, 101–109.

    Google Scholar 

  20. Heiss W, Karbe H, et al. Speech-Induced Cerebral Metabolic Activation Reflects Recovery From Aphasia, J. Neurol. Sci., 145, 1997, 213–217.

    Article  Google Scholar 

  21. Heiss W, Kessler J, Thiel A et al. Differential Capacity of Left and Right Hemispheric Areas for Compensation of Poststroke Aphasia, Annals of Neurology, 45, 1999, 430–438.

    Article  Google Scholar 

  22. Hellige J. Hemispheric Asymmetry, Harvard, 1993.

    Google Scholar 

  23. Innocenti G. General Organization of Callosal Connections in the Cerebral Cortex, Cerebral Cortex, 5, E. Jones & A. Peters (eds) Plenum, 1986, 291–353.

    Google Scholar 

  24. Ivry R & Robertson L. The Two Sides of Perception, MIT Press, 1998, 225–255.

    Google Scholar 

  25. Jacobs R & Kosslyn S. Encoding Shape and Spatial Relations, Cognitive Science, 18, 1994, 361–386.

    Article  Google Scholar 

  26. Kinsbourne M. The Minor Cerebral Hemisphere as a Source of Aphasic Speech, Arch. Neurol., 25, 1971, 302–306.

    Google Scholar 

  27. Kinsbourne M. (ed.) Asymmetrical Function of the Brain, Cambridge, 1978.

    Google Scholar 

  28. Knopman D, Rubens A, Selnes O, Klassen A, & Meyer M. Mechanisms of Recovery from Aphasia, Annals of Neurology, 15, 1984, 530–535.

    Article  Google Scholar 

  29. Kosslyn S, Chabris C, et al. Categorical Versus Coordinate Spatial Relations: Computational Analyses and Computer Simulations, J. Exper. Psych: Human Perception and Performance, 18, 1992, 562–577.

    Article  Google Scholar 

  30. Lee H, Nakada T, Deal J, et al. Transfer of Language Dominance, Annals of Neurology, 15, 1984, 304–307.

    Article  Google Scholar 

  31. Levitan S & Reggia J. A Computational Model of Lateralization and Asymmetries in Cortical Maps, Neural Computation, 12, 2000, 2037–2062.

    Article  Google Scholar 

  32. Levitan S & Reggia J. Interhemispheric Effects on Map Organization Following Simulated Cortical Lesions, Artificial Intelligence in Medicine, 17, 1999, 59–85.

    Article  Google Scholar 

  33. Meyer B. et al. Inhibitory and Excitatory Interhemispheric Transfers Between Motor Cortical Areas in Normal Humans and Patients with Abnormalities of Corpus Callosum, Brain, 118, 1995, 429.

    Article  Google Scholar 

  34. Meyer J, et al. Diaschisis, Neurol. Res., 15, 1993, 362–366.

    Google Scholar 

  35. Monoghan P & Shillcock R. The Cross-Over Effect in Unilateral Neglect, Brain, 121, 1998, 907–921.

    Article  Google Scholar 

  36. Netz J, Ziemann U & Homberg V. Hemispheric Asymmetry of Transcallosal Inhibition in Man, Experimental Brain Research, 104, 1995, 527–533.

    Article  Google Scholar 

  37. Ohyama M, Senda M, Kitamura S, et al. Role of the Nondominant Hemisphere During Word Repetition in Poststroke Aphasics, Stroke, 27, 1996, 897–903.

    Google Scholar 

  38. Pandya D. & Seltzer B. The Topography of Commissural Fibers, in Two Hemispheres-One Brain, F. Lepore et al (eds.), Alan Liss, 1986, 47–73.

    Google Scholar 

  39. Papanicolaou A, Moore B, Deutsch G, et al. Evidence for Right-Hemisphere Involvement in Aphasia Recovery, Arch. Neurol., 45, 1988, 1025–1029.

    Google Scholar 

  40. Pouget A. & Sejnowski T. Lesion in a Brain Function Model of Parietal Cortex, Parietal Lobe Contribution in Orientation in 3D Space, Thier, P. & Karnath, H. (eds.), 1997, 521–538.

    Google Scholar 

  41. Reggia J, Ruppin E, and Berndt R (eds.). Neural Modeling of Brain and Cognitive Disorders, World Scientific, 1996.

    Google Scholar 

  42. Reggia J, Goodall S, & Shkuro Y. Computational Studies of Lateralization of Phoneme Sequence Generation, Neural Computation, 10 1998, 1277–1297.

    Article  Google Scholar 

  43. Reggia J, Gittens S. & Chhabra J. Post-Lesion Lateralization Shifts in a Computational Model of Single-Wood Reading, Laterality, 5, 2000, 133–154.

    Article  Google Scholar 

  44. Reggia J, Goodall S, Shkuro Y & Glezer M. The Callosal Dilemma: Explaining Diaschisis in the Context of Hemispheric Rivalry, 2000, submitted.

    Google Scholar 

  45. Ringo J, Doty R, Demeter S & Simard P. Time Is of the Essence: A Conjecture that Hemispheric Specialization Arises from Interhemispheric Conduction Delay, Cerebral Cortex, 4, 1994, 331–343.

    Article  Google Scholar 

  46. Rizzo M. & Robin D. Bilateral Effects of Unilateral Visual Cortex Lesions in Humans, Brain, 1996, 119, 951–963.

    Article  Google Scholar 

  47. Selnes O. Recovery from Aphasia: Activating the “Right” Hemisphere, Annals of Neurology, 45, 1999, 419–420.

    Article  Google Scholar 

  48. Shevtsova N & Reggia J. A Neural Network Model of Lateralization During Letter Identification, J. Cognitive Neurosci., 11, 1999, 167–181.

    Article  Google Scholar 

  49. Shevtsova N & Reggia J. Interhemispheric Effects of Simulated Lesions in a Neural Model of Letter Identification, Brain and Cognition, 2000, in press.

    Google Scholar 

  50. Shkuro Y, Glezer M & Reggia J. Interhemispheric Effects of Lesions in a Neural Model of Single-Word Reading, Brain and Language, 72, 2000, 343–374.

    Article  Google Scholar 

  51. Silvestrini M, Troisi E, Matteis M, Cupini L & Caltagirone C. Involvement of the Healthy Hemisphere in Recovery From Aphasia and Motor Deficits in Patients with Cortical Ischemic Infarction, Neurology, 45, 1995, 1815–1820.

    Google Scholar 

  52. Sober S, Stark D, Yamasaki D & Lytton W. Receptive Field Changes After Stroke-like Cortical Ablation, J. Neurophys., 78, 1997, 3438–3443.

    Google Scholar 

  53. Thulborn K, et al. Plasticity of Language-Related Brain Function During Recovery from Stroke, Stroke, 30, 1999, 749–754.

    Google Scholar 

  54. Toyama et al. Synaptic Action of Commissural Impulses upon Association Efferent Cells in Cat Visual Cortex, Brain Res., 14, 1969, 518–520.

    Article  Google Scholar 

  55. Weiller C, et al. Recovery from Wernicke’s Aphasia: A PET Study, Annals of Neurology, 37, 1995, 723–732.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reggia, J.A., Shkuro, Y., Shevtsova, N. (2001). Computational Investigation of Hemispheric Specialization and Interactions. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics