Skip to main content

Robust Stimulus Encoding in Olfactory Processing: Hyperacuity and Efficient Signal Transmission

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

We investigate how efficient signal transmission and recon- struction can be achieved within the olfactory system. We consider a theoretical model of signal integration within the olfactory pathway that derives from its convergent architecture and results in increased sen- sitivity to chemical stimuli between the first and second stages of the system. This phenomenon of signal integration in the olfactory system is formalised as an instance of hyperacuity. By exploiting a large pop- ulation of chemically sensitive microbeads, we demonstrate how such a signal integration technique can lead to real gains in sensitivity in ma- chine olfaction. In a separate computational model of the early olfactory pathway that is driven by real-world chemosensor input, we investigate how spike-based signal and graded-potential signalling compares for sup- porting the accuracy of reconstruction of the chemical stimulus at later stages of neuronal processing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singer M.S., Shepherd G.M., Greer C.A., Olfactory receptors guide axons, Nature 377 (1995) 19–20.

    Google Scholar 

  2. Lin D.M., Ngai J., Development of the vertebrate main olfactory system, Curr.Opinion. Neurobiol. 9 (1999) 74–78.

    Article  Google Scholar 

  3. Dalton P., Psychophysical and behavioral characteristics of olfactory adaptation, Chem. Sens. 25 (2000) 487–492.

    Article  Google Scholar 

  4. Christensen T.A., Heinbockel T., Hildebrand J.G., Olfactory information processing in the brain: encoding chemical and temporal features of odors, J. Neurobiol. 30 (1996) 82–91.

    Article  Google Scholar 

  5. Reike R., Warland D, de Ruyter van Steveninck R., and Bialek W., Spikes: Exploring the Neural Code, MIT Press: MA, USA, 1997.

    Google Scholar 

  6. Pearce T.C., Verschure P.F.M.J.V. Olfaction: modeling and experimenting with an artificial nose, in NSF Report: Workshop on Neuromorphic Engineering Telluride, CO, USA. June 1998.

    Google Scholar 

  7. Kauer, J.S., In: The Neurobiology of Taste and Smell. eds: T.E. Finger and W.L. Silver. John Wiley and Sons. pp. 205–231, 1987.

    Google Scholar 

  8. Vassar R., Chao K.C., Sitcheran R., Nunez J.M., Vosshall L.B., Axel R., Topographic organization of sensory projections to the olfactory-bulb, Cell 79 (1994) 981–991.

    Article  Google Scholar 

  9. Van Drongelan W., Holley A., Doving K.B., Convergence in the olfactory system: quantitative aspects of odour sensing, J. Theor. Biol. 71 (1978) 39–48.

    Article  Google Scholar 

  10. Churchland P.S., Sejnowski T.J., The Computational Brain, MIT Press: Cambridge MA., 1992.

    Google Scholar 

  11. Klein S.A., Levi D.M. Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation, J. Opt. Soc. Am. A 2 (1985) 1170–1190.

    Article  Google Scholar 

  12. Duchamp-Viret P., Duchamp A., Vigouroux M., Amplifying role of convergence in olfactory system: A comparative Study of receptor cell and second-order neuron sensitivities, J. Neurophysiol. 61 (1989) 1085–1095.

    Google Scholar 

  13. Van Dronglelen W., Unitary recordings of near threshold response of receptor cells in the frog, J. Physiol. London, 277 (1978) 423–435.

    Google Scholar 

  14. Boeckh J., Ernst K.D., Contribution of single unit analysis in insects to an understanding of olfactory function, J. Comp. Physiol. A 161 (1987) 549–565.

    Article  Google Scholar 

  15. Mar D.J., Chow C.C., Gerstner W., Adams R.W., Collines J.J., Noise shaping in populations of coupled model neurons, PNAS 96 (1999) 10450–10455.

    Article  Google Scholar 

  16. Dickinson T.A., White J., Kauer J.S., Walt D.R., A chemical-detecting system based on a cross-reactive optical sensor array, Nature 382 (1996) 697–700.

    Article  Google Scholar 

  17. Albert K.J., Lewis N.S., Schauer C.L., Sotzing, G.A., Stitzel S.E., Vaid T.P., Walt D.R., Cross-reactive chemical sensor arrays, Chem. Rev. 100 (2000) 2595–2626.

    Article  Google Scholar 

  18. Dickinson T.A., Michael K.L., Kauer J.S., Walt D.R., Convergent, self-encoded bead sensor arrays in the design of an artificial nose. Anal. Chem. 71 (1999) 2192–2198.

    Article  Google Scholar 

  19. White J., Kauer J.S., Dickinson T.A., Walt D.R., Rapid analyte recognition in a device based on optical sensors and the olfactory system, Anal. Chem. 68 (1996) 2191–2202.

    Article  Google Scholar 

  20. Sharaf M.A., Illman D.L., Kowalski B.R., Chemometrics, John Wiley & Sons: New York., 1986.

    Google Scholar 

  21. Softky W.R., Koch C., The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs, J. Neurosci. 13 (1993) 334.

    Google Scholar 

  22. Mainen Z.F., Sejnowksi T.J., Reliability of spike timing in neocortical neurons, Science 268 (1995) 1503.

    Article  Google Scholar 

  23. Shadlen M.N., Newsome W.T., The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neuroscience 18 (1998) 3870.

    Google Scholar 

  24. Lowe G., Gold G.H., Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells, Nature 386 1993 283–286.

    Article  Google Scholar 

  25. Laurent G., A systems perspective on early olfactory coding, Science 286 (1999) 723–728.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pearce, T., Verschure, P., White, J., Kauer, J. (2001). Robust Stimulus Encoding in Olfactory Processing: Hyperacuity and Efficient Signal Transmission. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_33

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics