Skip to main content

Linguistic Computation with State Space Trajectories

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

This paper addresses the key question of this book by apply- ing the chaotic dynamics found in biological brains to design of a strictly sequential artificial neural network-based natural language understand- ing (NLU) system. The discussion is in three parts. The first part ar- gues that, for NLU, two foundational principles of generative linguistics, mainstream cognitive science, and much of artificial intelligence -that natural language strings have complex syntactic structure processed by structure-sensitive algorithms, and that this syntactic structure deter- mines string semantics- are unnecessary, and that it is sufficient to pro- cess strings purely as symbol sequences. The second part then describes neuroscientific work which identifies chaotic attractor trajectory in state space as the fundamental principle of brain function at a level above that of the individual neuron, and which indicates that sensory process- ing, and perhaps higher cognition more generally, are implemented by cooperating attractor sequence processes. Finally, the third part sketches a possible application of this neuroscientific work to design of an a se- quential NLU system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen J. (1995) Natural Language Understanding. Benjamin / Cummings, Redwood City, California

    MATH  Google Scholar 

  2. Bechtel W., Abrahamsen A.(1991) Connectionism and the Mind. Basil Blackwell

    Google Scholar 

  3. Beer R. (1995) A Dynamical Systems Perspective on Environment Agent Interactions. Artificial Intelligence 72:173–215

    Article  Google Scholar 

  4. Beer R.(2000) Dynamical Approaches to Cognitive Science. Trends in Cognitive Sciences 4(3):91–99

    Google Scholar 

  5. Briscoe T.(1996) Robust Parsing. In [24]

    Google Scholar 

  6. Brooks R.(1991) Intelligence without Representation. Artificial Intelligence 47:139–59

    Google Scholar 

  7. Carbonell J., Hayes P. (1992) Natural Language Understanding. In [78]

    Google Scholar 

  8. Carroll J., Long D. (1989) Theory of Finite Automata. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  9. Chalmers D. (1996) Minds, Machines, and Mathematics. Psyche 2. http://psyche.cs.monash.edu.au/psyche-index-v2.html

  10. Chiel H., Beer R. (1997) The Brain has a Body: Adaptive Behaviour Emerges from Interactions of nervous System, Body, and Environment. Trends in Neurosciences 20:553–7

    Article  Google Scholar 

  11. Chierchia G., McConnell-Ginet S. (2000) Meaning and Grammar: an Introduction to Semantics. 2nd ed. MIT Press, Cambridge, MA

    Google Scholar 

  12. Chomsky N. (1957) Syntactic Structures;. Mouton, s’Gravenhage

    Google Scholar 

  13. Chomsky N. (1959) On Certain Formal Properties of Grammars. Information and Control 1:91–112

    Article  MathSciNet  Google Scholar 

  14. Chomsky N. (1961) On the Notion ‘Rule of Grammar’. Proceedings of the 12th Symposium in Applied Mathematics, American Mathematical Society

    Google Scholar 

  15. Chomsky N., Miller G. (1965) Finitary Models of Language Users’, Readings in Mathematical Psychology 2, ed. Bush R., Galanter E., Luce D. John Wiley, New York

    Google Scholar 

  16. Christiansen M. (1992) The (Non)-necessity of Recursion in Natural Language Processing. Proceedings of The 14th Annual Conference of the Cognitive Science Society, University of Indiana

    Google Scholar 

  17. Christiansen M., Chater N. (1999) Toward a Connectionist Model of Recursion in Human Linguistic Performance. Cognitive Science 23:157–205

    Article  Google Scholar 

  18. Church K. (1980) On Memory Limitations in Natural Language Processing. TR MIT/CS/TR-45, Massachusetts Institute of Technology

    Google Scholar 

  19. Church K., Ejerhed E. (1983) Finite State Parsing. Papers from the Seventh Scandinavian Conference of Linguistics, University of Helsinki

    Google Scholar 

  20. Cisek P. (1999) Beyond the Computer Metaphor: Behaviour as Interaction. In [62]

    Google Scholar 

  21. Clark A. (1989) Microcognition: Philosophy, Cognitive Science, and Parallel Distributed Processing. MIT Press, Cambridge MA

    Google Scholar 

  22. Clark A. (1993) Associative Engines: Connectionism, Concepts, and Representational change. MIT Press, Cambridge MA

    Google Scholar 

  23. Clark A. (1997) Being There. Putting Brain, Body, and World Together Again. MIT Press, Cambridge MA

    Google Scholar 

  24. Cole R., Mariani J., Uszkoreit H., Zaenen A., Zue V. (1996) Survey of the State of the Art in Human Language Technology. Centre for Spoken Language Understanding, Oregon Graduate Institute of Science and Technology. http://cslu.cse.ogi.edu/HLTsurvey/

  25. Craig E. (ed) (1998) Routledge Encyclopedia of Philosophy. Routledge, London

    Google Scholar 

  26. Cruse D. (2000) Meaning in Language: an Introduction to Semantics and Pragmatics. Oxford University Press, Oxford

    Google Scholar 

  27. Dale R., Moisl H., Somers H. (eds) (2000) Handbook of Natural Language Processing. Marcel Dekker, New York

    Google Scholar 

  28. Dorffner G., Prem E. (1993) Connectionism, Symbol Grounding, and Autonomous Agents. Proceedings of the 15th Annual Conference of the Cognitive Science Society

    Google Scholar 

  29. Dorffner G. (ed) Neural Networks and a New Artificial Intelligence. International Thomson Computer Press, London

    Google Scholar 

  30. Dreyfus H. (1992) What Computers Still Can’t Do. 2nd ed. MIT Press, Cambridge MA

    Google Scholar 

  31. Finlay J., Dix A. (1996) An Introduction to Artificial Intelligence. UCL Press, London

    Google Scholar 

  32. Fodor J., Pylyshyn Z. (1988) Connectionism and Cognitive Architecture: a Critical Analysis. Cognition 28:3–71

    Article  Google Scholar 

  33. Freeman W. (1991) The Physiology of Perception. Scientific American 264(2):78–85

    MathSciNet  Google Scholar 

  34. Freeman W. (1992) Tutorial in Neurobiology: from Single Neurons to Brain Chaos. International Journal of Bifurcation and Chaos 2:451–82

    Article  MATH  Google Scholar 

  35. Freeman W. (1994)Chaos in the CNS: Theory and Practice. Flexibility and Constraint in Behavioral Systems, ed. Greenspan R., Kyriacou C. John Wiley, New York

    Google Scholar 

  36. Freeman W. (1994) Qualitative Overview of Population Neurodynamics. Neural Modeling and Neural Networks, ed. Ventriglia F. Pergamon, Oxford

    Google Scholar 

  37. Freeman W. (1999) Consciousness, Intentionality, and Causality. In [62]0

    Google Scholar 

  38. Freeman W. (1999) How Brains Make Up their Minds. Weidenfeld and Nicholson, London

    Google Scholar 

  39. Freeman W., Nunez R. (1999) Restoring to Cognition the Forgotten Primacy of Action, Intention, and Emotion’. In [62]

    Google Scholar 

  40. Gardner H. (1985) The Mind’s New Science. A History of the Cognitive Revolution. Basic Books, New York

    Google Scholar 

  41. Gazdar G., Pullum G. (1985) Computationally Relevant Properties of Natural Languages and their Grammars. New Generation Computing 3:273–306

    Article  Google Scholar 

  42. Gazdar G., Mellish C. (1989) Natural Language Processing in LISP. Addison-Wesley, Wokingham, UK

    Google Scholar 

  43. Haugeland J. (1985) Artificial Intelligence: the Very Idea. MIT Press, Cambridge MA

    Google Scholar 

  44. Hopcroft J., Ullman J. (1979) Introduction to Automata Theory, Languages, and Computation. Addison Wesley, Wokingham, UK

    MATH  Google Scholar 

  45. Horwich P. (1998) Meaning. Clarendon Press, Oxford

    Google Scholar 

  46. Hurley S. (1998) Consciousness in Action. MIT Press, Cambridge MA

    Google Scholar 

  47. Johnson M. (1987) The Body in the Mind: the Bodily Basis of Meaning, Imagination, and Reason. University of Chicago Press, Chicago

    Google Scholar 

  48. Kelso J.A.S. (1995) Dynamic Patterns: the Self-organization of Brain and Behavior. MIT Press, Cambridge MA

    Google Scholar 

  49. Kramer B., Mylopoulos J. (1992) Knowledge Representation. In [78]

    Google Scholar 

  50. Krawer S., Tombe L. (1981) Transducers and Grammars as Theories of Language. Theoretical Linguistics 10:173–202

    Article  Google Scholar 

  51. Langendoen D. (1975) Finite State Parsing of Phrase-structure Languages and the Status of Readjustment Rules in Grammar. Linguistic Inquiry 6:533–54

    Google Scholar 

  52. Langendoen D., Langsam Y. (1984) The Representation of Constituent Structure for Finite State Parsing. Proceedings of the Conference for Computational Linguistics, COLING 84

    Google Scholar 

  53. Langendoen D., Postal P. (1984b) The Vastness of Natural Languages. Blackwell, Oxford

    Google Scholar 

  54. Lappin S. (1996) The Handbook of Contemporary Semantic Theory. Blackwell, Oxford

    Google Scholar 

  55. Larson R., Segal G. (1995) Knowledge of Meaning. MIT Press, Cambridge, MA

    Google Scholar 

  56. Lochbaum K., Grosz B., Sidner C. (2000) Discourse Structure and Intention Recognition. In [27]

    Google Scholar 

  57. Luger G., Stubblefield W. (1998) Artificial Intelligence. Structures for Complex Problem Solving. Addison Wesley Longman, Harlow, UK

    Google Scholar 

  58. McClelland J., Rumelhart D. (1986) Parallel Distributed Processing. Explorations in the Microstructure of cognition. MIT Press, Cambridge MA

    Google Scholar 

  59. Moisl H. (1992) Connectionist Finite-state Natural Language Processing. Connection Science 2:67–91

    Article  Google Scholar 

  60. Moisl H (2000) NLP Based on Artificial Neural Networks: Introduction. In [27]

    Google Scholar 

  61. Newell A., Simon H. (1976) Computer Science as Empirical Enquiry: Symbols and Search. Communications of the Association for Computing Machinery 19:113–26

    MathSciNet  Google Scholar 

  62. Nunez R., Freeman W. (1999) Reclaiming Cognition. Imprint Academic,Thorverton, UK

    Google Scholar 

  63. Partee B., ter Meulen a., Wall R. (1990) Mathematical Methods in Linguistics. Kluwer, Boston

    MATH  Google Scholar 

  64. Penrose R. (1989) The Emperor’s New Mind. Oxford University Press, Oxford

    Google Scholar 

  65. Penrose R. (1994) Shadows of the Mind. Oxford University Press, Oxford

    Google Scholar 

  66. Pereira F. (1996) Sentence modeling and parsing. In [24]

    Google Scholar 

  67. Petrick S. (1992) Parsing. In [78]

    Google Scholar 

  68. Poesio M. (2000) Semantic analysis. In [27]

    Google Scholar 

  69. Port R., van Gelder T. (1995) Mind as Motion. Explorations in the Dynamics of Cognition. MIT Press, Cambridge MA

    Google Scholar 

  70. Pulman S. (1986) Grammars, Parsers, and Memory Limitations. Language and Cognitive Processes 1:197–225

    Article  Google Scholar 

  71. Pulman S. (1996) Semantics. In [24]

    Google Scholar 

  72. Pylyshyn Z. (1986) Computation and Cognition. MIT Press, Cambridge MA

    Google Scholar 

  73. Pylyshyn Z. (1992) Cognitive science. In [78]

    Google Scholar 

  74. Reich P. (1969) The Finiteness of Natural Language. Language 45:831–43

    Article  Google Scholar 

  75. Roche E., Schabes Y. (1997) Finite-state Language Processing. MIT Press, Cambridge MA

    Google Scholar 

  76. Saeed J. (1997) Semantics. Blackwell, Oxford

    Google Scholar 

  77. Samuelsson C., Wiren M. (2000) Parsing Techniques. In [27]

    Google Scholar 

  78. Shapiro S. (1992) Encyclopedia of Artificial Intelligence. 2nd ed. John Wiley and Sons, New York

    Google Scholar 

  79. Shieber S. (1985) Evidence against the Context Freeness of Natural Language. Linguistics and Philosophy 8:333–43

    Article  Google Scholar 

  80. Skarda C. (1999) The Perceptual Form of Life. In [62]

    Google Scholar 

  81. Skarda C., Freeman W. (1987) How Brains Make Chaos in order to Make Sense of the World. Behavioral and Brain Sciences 10(2):161–95

    Article  Google Scholar 

  82. Steels L., Brooks R. (1995) The Artificial Life Route to Artificial Intelligence. Lawrence Erlbaum, Hove, UK

    Google Scholar 

  83. Thelen E., Smith L. (1994) A Dynamic Systems Approach to the Development of Cognition and Action. MIT Press, Cambridge MA

    Google Scholar 

  84. van Gelder T. (1998) Cognitive Architecture: What choice do we have? In Constraining cognitive theories: issues and opinions, ed. Pylyshyn Z. Ablex, Norwood NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moisl, H. (2001). Linguistic Computation with State Space Trajectories. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_32

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics