Skip to main content

Biological Grounding of Recruitment Learning and Vicinal Algorithms in Long-Term Potentiation

  • Chapter
  • First Online:
Emergent Neural Computational Architectures Based on Neuroscience

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2036))

Abstract

Biological networks are capable of gradual learning based on observing a large number of exemplars over time as well as of rapidly memorizing specific events as a result of a single exposure. The focus of research in neural networks has been on gradual learning, and the modeling of one-shot memorization has received relatively little atten- tion. Nevertheless, the development of biologically plausible computa- tional models of rapid memorization is of considerable value, since such models would enhance our understanding of the neural processes un- derlying episodic memory formation. A few researchers have attempted the computational modeling of rapid (one-shot) learning within a frame- work described variably as recruitment learning and vicinal algorithms. Here it is shown that recruitment learning and vicinal algorithms can be grounded in the biological phenomena of long-term potentiation and long-term depression. Toward this end, a computational abstraction of LTP and LTD is presented, and an “algorithm” for the recruitment of binding-detector (or coincidence-detector) cells is described and evaluated using biologically realistic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ajjanagadde, V., Shastri, L.: Rules and Variables in Neural Nets. Neural Computation, 3 (1991) 121–134.

    Article  Google Scholar 

  2. Amaral, D.G., Ishizuka, N., Claiborne, B.: Neurons, numbers and the hippocampal network. In Progress in Brain Research: Understanding the brain through the hippocampus, J. Storm-Mathisen, J. Zimmer, & O.P. Ottersen (Eds.), 1–11, Elsevier Science, Amsterdam. (1990).

    Chapter  Google Scholar 

  3. Artola, A., Singer, W.: Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in Neuroscience, 16 (1993) 480–487.

    Article  Google Scholar 

  4. Bailey, D., Chang, N., Feldman, J., Narayanan, S.: Extending Embodied Lexical Development. In the Proceedings of the 20th Conference of the Cognitive Science Society, Madison, WI. (1998) 84–89.

    Google Scholar 

  5. Bliss, T.V.P., Lomo, T.: Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232 (1973) 331–356.

    Google Scholar 

  6. Brown, T.H, Kairiss, E.W., & Keenan, C.L.: Hebbian Synapses: Biophysical Mechanisms and Algorithms. Annual Review of Neuroscience, 13 (1990) 475–511.

    Article  Google Scholar 

  7. Cohen, N.J., Eichenbaum, H.: Memory, Amnesia, and the Hippocampal System. MIT Press, Cambridge, Massachusetts (1993).

    Google Scholar 

  8. Diederich, J.: Instruction and high-level learning in connectionist networks. Connection Science, 1 (1989) 161–180.

    Article  Google Scholar 

  9. Dudek, S.M., Bear, M.F.: Bidirectional Long-Term Modification of Synaptic Effectiveness in the Adult and Immature Hippocampus. Journal of Neuroscience, 13 (1992) 2910–2918.

    Google Scholar 

  10. Feldman, J.A.: Dynamic connections in neural networks. Bio-Cybernetics, 46 (1982) 27–39.

    Article  Google Scholar 

  11. Feldman, J.A., Bailley, D.: Layered hybrid connectionist models for cognitive science. In Hybrid Neural System, S. Wermter & R. Sun (Eds.), 14–27, Springer, Heidelberg (2000).

    Chapter  Google Scholar 

  12. Levy, W.B. & Steward, O.: Synapses as associative memory elements in the hippocampal formation. Brain Research, 175 (1979) 233–245.

    Article  Google Scholar 

  13. Linden, D.J.: Long-term synaptic depression in the mamallian brain. Neuron, 12 (1994) 457–472.

    Article  Google Scholar 

  14. Malenka, R.C., Nicoll, R.A.: Long-term Potentiation-A Decade of Progress? Nature, 285 (1999) 1870–1874.

    Google Scholar 

  15. Marr, D.: Simple memory: a theory for archicortex. Philosophical Transactions of the Royal Society, B 262 (1971) 23–81.

    Article  Google Scholar 

  16. Maass, W., Ruf, B.: On Computation with Pulses. Information and Computation, 148 (1999) 202–218.

    Article  MATH  MathSciNet  Google Scholar 

  17. McNaughton, B.L., Morris, R.G.M.: Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neuroscience, 10 (1987) 408–415.

    Article  Google Scholar 

  18. Nicoll, R.A., Malenka, R.C.: Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature, 377 (1995) 115–118.

    Article  Google Scholar 

  19. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map, Clarendon Press, Oxford (1978).

    Google Scholar 

  20. Page, M.: Connectionist Modeling in Psychology: A Localist Manifesto Behavioral and Brain Sciences, 23 (2000), In press.

    Google Scholar 

  21. Rioult-Pedotti, M.-S., Friedman, D., Donoghue, J.P.: Learning-induced LTP in Neocortex. Science, 290 (2000) 533–536.

    Article  Google Scholar 

  22. Shastri, L.: Semantic Networks: An evidential formalization and its connectionist realization. (see p. 181–191). Morgan Kaufmann, Los Altos/Pitman Publishing Company, London (1988).

    MATH  Google Scholar 

  23. Shastri, L.: A Model of Rapid Memory Formation in the Hippocampal System, In the Proceedings of the 19th Annual Conference of the Cognitive Science Society, Stanford University, CA, (1997) 680–685.

    Google Scholar 

  24. Shastri, L.: Recruitment of binding and binding-error detector circuits via long-term potentiation. Neurocomputing, 26-27 (1999) 865–874.

    Article  Google Scholar 

  25. Shastri, L.: Advances in shruti-A neurally motivated model of relational knowledge representation and rapid inference using temporal synchrony. Applied Intelligence, 11 (1999) 79–108.

    Article  Google Scholar 

  26. Shastri, L.: A biological grounding of recruitment learning and vicinal algorithms. Technical Report TR-99-009, International Computer Science Institute, Berkeley, CA. March, 1999.

    Google Scholar 

  27. Shastri, L.: From transient patterns to persistent structures: a computational model of rapid memory formation in the hippocampal system. In preparation.

    Google Scholar 

  28. Shastri, L., Ajjanagadde V.: From simple associations to systematic reasoning: A connectionist encoding of rules, variables and dynamic bindings using temporal synchrony. Behavioral and Brain Sciences, 16 (1993) 417–494.

    Article  Google Scholar 

  29. Shastri, L., Grannes, D.J., Narayanan, S., Feldman, J.A.: A Connectionist Encoding of Schemas and Reactive Plans. In Hybrid Information Processing in Adaptive Autonomous vehicles, G.K. Kraetzschmar and G. Palm (Eds.), Lecture Notes in Computer Science, Springer-Verlag, Berlin (To appear).

    Google Scholar 

  30. Shastri, L., Wendelken, C.: Seeking coherent explanations-a fusion of structured connectionism, temporal synchrony, and evidential reasoning. In the Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society, Philadelphia, PA. (2000) 453–458.

    Google Scholar 

  31. Singer, W.: Synchronization of cortical activity and its putative role in information processing and learning. Annual Review of Physiology 55 (1993) 349–74.

    Article  Google Scholar 

  32. Squire, L.R.: Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review 99 (1992) 195–231.

    Article  Google Scholar 

  33. Tang, Y., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo, M., Liu, G., Tsien, J.Z.: Genetic enhancement of learning and memory in mice Nature, 401 (1999) 63–69.

    Article  Google Scholar 

  34. Stanton, P.K. & Sejnowski, T.J.: Associative long-term depression in the hippocampus induced by hebbian covariance. Nature, 339 (1989) 215–218.

    Article  Google Scholar 

  35. Treves, A & Rolls, E.T.: Computational analysis of the role of the hippocampus in memory. Hippocampus, 4 (1994) 374–391.

    Article  Google Scholar 

  36. Tulving, E.: Elements of Episodic Memory. Clarendon Press, Oxford (1983).

    Google Scholar 

  37. Valiant, L.: Circuits of the mind, Oxford University Press, New York (1994).

    MATH  Google Scholar 

  38. Van Hoesen, G.W.: The primate hippocampus gyrus: New insights regarding its cortical connections. Trends in Neuroscience, 5 (1982) 345–350.

    Article  Google Scholar 

  39. von der Malsburg, C.: Am I thinking assemblies? In Brain Theory, ed. G. Palm & A. Aertsen. Springer-Verlag, Berlin (1986).

    Google Scholar 

  40. West, M.J.: Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. In Progress in Brain Research: Understanding the brain through the hippocampus J. Storm-Mathisen, J. Zimmer, & O.P. Ottersen (Eds.) 13–36, Elsevier Science, Amsterdam (1990).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shastri, L. (2001). Biological Grounding of Recruitment Learning and Vicinal Algorithms in Long-Term Potentiation. In: Wermter, S., Austin, J., Willshaw, D. (eds) Emergent Neural Computational Architectures Based on Neuroscience. Lecture Notes in Computer Science(), vol 2036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44597-8_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-44597-8_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42363-8

  • Online ISBN: 978-3-540-44597-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics