Skip to main content

Feature Selection for a Real-World Learning Task

  • Conference paper
  • First Online:
Book cover Machine Learning and Data Mining in Pattern Recognition (MLDM 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2123))

Abstract

Machine learning algorithms used in early fault detection for centrifugal pumps make it possible to better exploit the information content of measured signals, making machine monitoring more economical and application-oriented. The total amount of sensors is reduced by exhausting the information derived from the sensors far beyond the scope of traditional engineering through the application of various features and high-dimensional decision-making. The feature selection plays a crucial role in modelling an early fault detection system. Due to presence of noisy features with outliers and correlations between features a correctly determined subset of features will distinctly improve the classification rate. In addition the requirements for the hardware to monitor the pump decrease therefore its price. Wrappers and filters, the two major approaches for feature selection described in literature [4] will be investigated and compared using real-world data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cardie, C: Using decision-trees to improve case-based learning; 10. Conf on Machine Learning; Wien; 1993

    Google Scholar 

  2. Devijer, P.; Kittler, J.: Pattern Recognition-A statistical approach; Prentice / Hall; 1982

    Google Scholar 

  3. Duda, R.; Hart, P.: Pattern classification and scene analysis; John Wiley & Sons; 1973

    Google Scholar 

  4. Kohavi, R.: Wrappers for performance enhancement and oblivious decison graphs; Dissertation; Stanford University; 1995

    Google Scholar 

  5. Lim, T.-S., Loh, W.-Y. and Shih, Y.-S.: A comparison of prediction accuracy, complexity, and training time of 33 old and new classification algorithms; Machine Leraning; preprint www.recursive-partitioning.com/mach1 317.pdf; 1999

    Google Scholar 

  6. Martens et al: ‘An initial comparison of a fuzzy neural classifier and a decision tree based classifier’, Expert Systems with Applications (Pergamon) 15; 1998

    Google Scholar 

  7. Michie, D.; Spiegelhalter, D.; Taylor, C: Machine Learning, Neural and Statistical Classification; Ellis Horwood; 1994

    Google Scholar 

  8. Perner, P.; Apte, C: Empirical Evaluation of Feature Subset Selection Based on a Real World Data Set, In: D.A. Zighed, J. Komorowski, and J. Zytkow, Principles of Data Mining and Knowledge Discovery, Springer; 2000

    Google Scholar 

  9. Quinlan, J. R., Comparing connectionist and symbolic learning methods, Computational Learning Theory and Natural Learning Systems; Constraints and Prospects, ed. R. Rivest; MIT Press, 1994

    Google Scholar 

  10. Scherf, M.; Brauer, W.: Feature Selection by Means of a Feature Weighting Approach;Technical Report No FKI-221-97;Forschungsberichte Künstliche Intelligenz, Institut für Informatik, TU München; 1997

    Google Scholar 

  11. See5 / C5; Release 1.10; Quinlan, J. R.; http://www.rulequest.com ; 1999

  12. Spath D.; Hellmann, D. H.: Automatisches Lernen zur Störungsfrüherkennung bei ausfallkritischen Anlageelementen; Abschlußbericht zum DFG-Forschungsprojekt Sp 448/7-3 und He 2585/1-3; 1999

    Google Scholar 

  13. Rauber, T.:Tooldiag-PatternRecognitionToolbox;Version2.1; http://www.inf.ufes.br/~thomas/home/tooldiag ; 1994

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kollmar, D., Hellmann, D. (2001). Feature Selection for a Real-World Learning Task. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2001. Lecture Notes in Computer Science(), vol 2123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44596-X_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-44596-X_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42359-1

  • Online ISBN: 978-3-540-44596-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics