Skip to main content

Estimating the Optimal Margins of Embeddings in Euclidean Half Spaces

  • Conference paper
  • First Online:
Book cover Computational Learning Theory (COLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2111))

Included in the following conference series:

Abstract

Concept classes can canonically be represented by matrices with entries 1 and -1. We use the singular value decomposition of this matrix to determine the optimal margins of embeddings of the concept classes of singletons and of half intervals in homogeneous Euclidean half spaces. For these concept classes the singular value decomposition can be used to construct optimal embeddings and also to prove the corresponding best possible upper bounds on the margin. We show that the optimal margin for embedding n singletons is \( \frac{n} {{3n - 4}} \) and that the optimal margin for half intervals over \( \left\{ {1,...,n} \right\}{\mathbf{ }}is{\mathbf{ }}\frac{\pi } {{21nn}} + \Theta \left( {\frac{1} {{\left( {1nn} \right)^2 }}} \right) \) . For the upper bounds on the margins we generalize a bound given in [6]. We also discuss the concept classes of monomials to point out limitations of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-David, S.. (2000). Personal Communication.

    Google Scholar 

  2. Ben-David, S., Eiron, N., & Simon, H.U. (2000). Limitations of learning via embeddings in Euclidean Hals-Spaces. The Fourteenth Annual Conference on Computational Learning Theory and The Fifth European Conference on Computational Learning Theory.

    Google Scholar 

  3. Ben-David, S., Eiron, N., & Simon, H.U. (2000). Unpublished manuscript.

    Google Scholar 

  4. Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 100, 157–184.

    Google Scholar 

  5. Christianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines. Cambridge, United Kingdom: Cambridge University Press.

    Google Scholar 

  6. Forster, J. (2001). A Linear Lower Bound on the Unbounded Error Probabilistic Communication Complexity. Sixteenth Annual IEEE Conference on Computational Complexity.

    Google Scholar 

  7. Horn, R.A., & Johnson, C.R. (1985). Matrix Analysis. Cambridge, United Kingdom: Cambridge University Press.

    MATH  Google Scholar 

  8. Kearns, M.J., & Vazirani, U.V. (1994). An Introduction to Computational Learning Theory. Cambridge, Massachusetts: Massachusetts Institute of Technology.

    Google Scholar 

  9. Krause, M. (1996). Geometric arguments yield better bounds for threshold circuits and distributed computing. Theoretical Computer Science, 156, 99–117.

    Article  MATH  MathSciNet  Google Scholar 

  10. Maass, W. & Turan, G. (1992). Lower Bound Methods and Separation Results for On-Line Learning Models. Machine Learning, 9, 107–145.

    MATH  Google Scholar 

  11. Novikoff, A.B. (1962). On convergence proofs on perceptrons. Symposium on the Mathematical Theory of Automata, 12, 615–622. Polytechnic Institute of Brooklyn.

    Google Scholar 

  12. Vapnik, V. (1998). Statistical Learning Theory. New York: John Wiley & Sons, Inc.

    MATH  Google Scholar 

  13. Vapnik, V.N., & Chervonenkis, A.Y. (1971). On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications, 16, 264–280.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Forster, J., Schmitt, N., Simon, H.U. (2001). Estimating the Optimal Margins of Embeddings in Euclidean Half Spaces. In: Helmbold, D., Williamson, B. (eds) Computational Learning Theory. COLT 2001. Lecture Notes in Computer Science(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44581-1_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-44581-1_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42343-0

  • Online ISBN: 978-3-540-44581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics