Skip to main content

Geometric Methods in the Analysis of Glivenko-Cantelli Classes

  • Conference paper
  • First Online:
Computational Learning Theory (COLT 2001)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2111))

Included in the following conference series:

Abstract

We use geometric methods to investigate several fundamental problems in machine learning. We present a new bound on the L p coveringn umbers of Glivenko-Cantelli classes for \( 1 \leqslant p < \infty \) in terms of the fat-shatteringdimension of the class, which does not depend on the size of the sample. Usingthe new bound, we improve the known sample complexity estimates and bound the size of the Sufficient Statistics needed for Glivenko-Cantelli classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Adams: Sobolev Spaces, Pure and Applied Mathematics series 69, Academic Press 1975.

    Google Scholar 

  2. M. Anthony, P.L. Bartlett: Neural Network Learning: Theoretical Foundations, Cambridge University Press, 1999.

    Google Scholar 

  3. N. Alon, S. Ben-David, N. Cesa-Bianchi, D. Haussler: Scale sensitive dimensions, uniform convergence and learnability, J. of ACM 44(4), 615–631, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  4. P.L. Bartlett, S.R. Kulkarni, S.E. Posner: Coveringn umbers for real valued function classes, IEEE transactions on information theory, 43(5), 1721–1724, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. P.L. Bartlett, P. Long: More theorems about scale sensitive dimensions and learning, Proceedings of the 8th annual conference on Computation Learning Theory, 392–401, 1995.

    Google Scholar 

  6. R.M. Dudley: The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. of Functional Analysis 1, 290–330, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  7. R.M. Dudley, E. Giné, J. Zinn: Uniform and universal Glivenko-Cantelli classes, J. Theoret. Prob. 4, 485–510, 1991.

    Article  MATH  Google Scholar 

  8. M. Ledoux, M. Talagrand: Probability in Banach spaces, Springer Verlag 1992.

    Google Scholar 

  9. J. Lindenstrauss, L. Tzafriri: Classical Banach Spaces Vol II, Springer Verlag.

    Google Scholar 

  10. S. Mendelson: Rademacher Averages and phase transitions in Glivenko-Cantelli classes, preprint.

    Google Scholar 

  11. S. Mendelson, N. Tishby: Statistical Sufficiency for Classes in Empirical L 2 Spaces, Proceedings of the 13th annual conference on Computational Learning Theory, 81–89, 2000.

    Google Scholar 

  12. A. Pajor: Sous espaces ln/1 des espaces de Banach, 1985

    Google Scholar 

  13. G. Pisier: Probabilistic methods in the geometry of Banach spaces, Probability and Analysis, Lecture notes in Mathematics 1206, 167–241, Springer Verlag 1986.

    Google Scholar 

  14. G. Pisier: The volume of convex bodies and Banach space geometry, Cambridge University Press, 1989.

    Google Scholar 

  15. M. Talagrand: Sharper bounds for Gaussian and empirical processes, Annals of Probability, 22(1), 28–76, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  16. N. Tomczak-Jaegermann: Banach-Mazur distance and finite-dimensional operator Ideals, Pitman monographs and surveys in pure and applied Mathematics 38, 1989

    Google Scholar 

  17. V. Vapnik, A. Chervonenkis: Necessary and sufficient conditions for uniform convergence of means to mathematical expectations, Theory Prob. Applic. 26(3), 532–553, 1971

    Article  MathSciNet  Google Scholar 

  18. A.W. Van-der-Vaart, J.A. Wellner: Weak convergence and Empirical Processes, Springer-Verlag, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendelson, S. (2001). Geometric Methods in the Analysis of Glivenko-Cantelli Classes. In: Helmbold, D., Williamson, B. (eds) Computational Learning Theory. COLT 2001. Lecture Notes in Computer Science(), vol 2111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44581-1_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-44581-1_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42343-0

  • Online ISBN: 978-3-540-44581-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics