Skip to main content
Book cover

Informatics pp 341–355Cite as

Computational Biology at the Beginning of the Post-genomic Era

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2000))

Abstract

The year 2000 will be remembered in history as the year in which the human genome has been sequenced. This marks the end of the pre-genomic era which was characterized by strong world-wide efforts to sequence the human genome and, in fact, ended significantly ahead of schedule. Today, we are at the entry of the probably much longer post-genomic era, which is characterized by the grand quest of making sense of the genomic text. This goal can only be achieved by a concerted effort involving biological experiments and computer analyses. Conquering the computer part is the task of the scientific field of computational biology or bioinformatics. Here we will describe two facets of computational biology. One is that of a discipline shaped by several grand challenge basic research problems. The other is that of a field driven by a strong demand for immediate answers to pressing practical problems in biotechnology, notably in pharmaceutics and medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Werner, Analyzing Regulatory Regions in Genomes, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  2. V. Solovyev, Structure, Properties and Computer Identification of Eucaryotic Genes, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  3. S. He, H. A. Scheraga, Brownian Dynamics Simulations of Protein Folding. J. Chem. Phys. 108 (1998) 287–300.

    Article  Google Scholar 

  4. D. Baker, A Surprising Simplicity to Protein Folding, Nature 405 (2000) 39–42.

    Article  Google Scholar 

  5. J. Kostrowicki, H. A. Scheraga, Application of the Diffusion Equation Method for Global Optimization of Oligopeptides, J. Phys. Chem. 96 (1992) 7442–7449.

    Article  Google Scholar 

  6. R. L. Dunbrack, Jr., Homology Modeling in Biology and Medicine, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  7. R. M. Zimmer, Protein Structure Prediction and Applications in Structural Genomics, Protein Function Assignment and Drug Target Finding, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  8. R. M. Zimmer, R. Thiele, Fast Protein Fold Recognition and Accurate Sequence-Structure Alignment, Proceedings of German Conference on Bioinformatics (GCB’96), R. Hofestädt, T. Lengauer, M. Löffler, D. Schomburg, eds., Springer Lecture Notes in Computer Science No. 1278 (1997) 137–148.

    Google Scholar 

  9. R. Thiele, R. M. Zimmer, T. Lengauer, Protein Threading by Recursive Dynamic Programming. J. Mol. Biol. 290, 3 (1999) 757–779

    Article  Google Scholar 

  10. Proteins: Structure, Function and Genetics, Suppl: Third Meeting on the Critical Assessment of Techniques for Protein Structure Prediction (1999). http://PredictionCenter.llnl.gov/casp3/Casp3.html

  11. T. Lengauer, R. Zimmer, Structure Prediction Methods for Drug Design, Briefings in Bioinformatics 1,3 (2000)

    Google Scholar 

  12. S. Anderson, Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol. 6,1 (1999)11–12

    Google Scholar 

  13. I. Andricioaei, J. E. Straub, Finding the Needle in the Haystack: Algorithms for Conformal Optimization, Computers in Physics 10, 5 (1996) 449.

    Article  Google Scholar 

  14. L. Piela, J. Kostrowicki, H. A. Scheraga, The Multiple—Minima Problem in the Conformational Analysis of Molecules. Deformation of the Potential Energy Hypersurface by the Diffusion Equation Method, J. Phys. Chem. 93 (1989) 3339–3346.

    Google Scholar 

  15. P. Kollman, Free Energy Calculations: Applications to Chemical and Biochemical Phenomena, Chemical Reviews 93 (1993) 2395–2417.

    Article  Google Scholar 

  16. M. K. Gilson et al., The Statistical-Thermodynmic Basis for Computation of Binding Affinities: A Critical review, Biophysical Journal 72 (1997) 1047–1069.

    Article  Google Scholar 

  17. J. D. Hirst, Predicting ligand binding energies, Current Opinion in Drug Discovery and Development 1 (1998) 28–33.

    Google Scholar 

  18. M. Rarey, M. Stahl, G. Klebe, Screening of Drug Databases, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  19. E. O. Voit, Computational Analysis of Biochemical Systems, Cambridge University Press (2000)

    Google Scholar 

  20. M. Tomita et al., E-CELL: Software Environment for Whole-Cell Simulation, Bioinformatics 15, 1 (1999) 72–84.

    Article  Google Scholar 

  21. A. Zien, R. Küffner, R. Zimmer., T. Lengauer, Analysis of Gene Expression Data With Pathway Scores, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB2000), AAAI Press (2000) 407–417.

    Google Scholar 

  22. S. Fuhrman, S. Liang, X. Wen, R. Somogyi, Target Finding in Genomes and Proteomes, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  23. P.-A. Binz et al., Proteome Analysis, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  24. P., Bork, E.V. Koonin, Predicting Function from Protein Sequences: Where are the Bottlenecks? Nature Genet. 18 (1998) 313–318.

    Article  Google Scholar 

  25. M. A. Huynen, Y. Diaz-Lazcoz and P. Bork, Differential Genome Display, Trends in Genetics 13 (1997) 389–390.

    Article  Google Scholar 

  26. E. M. Marcotte et al., Detecting Protein Function and Protein-Protein Interactions from Genome Sequences, Science 285, 5428 (1999)751–753.

    Google Scholar 

  27. http://www.ncbi.nlm.nih.gov/PubMed/

  28. H. Shatkay et al., Genes, Themes and Microarrays, Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology (ISMB2000), AAAI Press (2000) 317–328.

    Google Scholar 

  29. E. A. Clark et al., Genomic Analysis of Metastasis Reveals an Essential Role for RhoC, Nature 406 (2000)532–535.

    Article  Google Scholar 

  30. B. Kramer, G. Metz, M. Rarey, T. Lengauer, Ligand Docking and Screening with FlexX, Medical Chemistry Research 9, 7/8 (1999) 463–478.

    Google Scholar 

  31. M. Rarey, J. S. Dixon, Feature Trees: A New Molecular Similarity Measure Based on Tree Matching, J Comput Aided Mol Des. 12, 5 (1998) 471–490.

    Article  Google Scholar 

  32. M. J. Rieder, D. A. Nickerson, Analysis of Sequence Variations, in Bioinformatics-From Genomes to Drugs (T. Lengauer, ed.), Wiley-VCH, Heidelberg, to appear.

    Google Scholar 

  33. A. Krogh, M. Brown, I. S. Mian, K. Sjölander, D. Haussler, Hidden Markov Models in Computational Biology: Application to Protein Modeling, J. Mol. Biol. 235 (1994) 1501–1531.

    Article  Google Scholar 

  34. S. R. Eddy, Profile Hidden Markov Models, Bioinformatics 14,9 (1998) 755–763.

    Article  Google Scholar 

  35. T. Jaakola, M. Diekhans, D. Haussler, Using the Fisher Kernel Method to Detect Remote Protein Homologies, Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology (ISMB’99), AAAI Press (1999) 149–158.

    Google Scholar 

  36. A. Zien et al., Engineering Support Vector Machines Kernels that Recognize Translation Initiation Sites, Bioinformatics (2000) to appear.

    Google Scholar 

  37. A. Zien, R. Zimmer, T. Lengauer, A Simple Iterative Approach to Parameter Optimization, Proceedings of the Fourth Annual Conference on Research in Computational Molecular Biology (RECOMB’00), ACM Press (2000) 318–327.

    Google Scholar 

  38. R. Zimmer, T. Lengauer, Fast and Numerically Stable Parametric Alignment of Biosequences. Proceedings of the First Annual Conference on Research in Computational Molecular Biology (RECOMB’97) (1997) 344–353.

    Google Scholar 

  39. http://scop.mrc-lmb.cam.ac.uk/scop/

  40. http://www.biochem.ucl.ac.uk/bsm/cath/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lengauer, T. (2001). Computational Biology at the Beginning of the Post-genomic Era. In: Wilhelm, R. (eds) Informatics. Lecture Notes in Computer Science, vol 2000. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44577-3_24

Download citation

  • DOI: https://doi.org/10.1007/3-540-44577-3_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41635-7

  • Online ISBN: 978-3-540-44577-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics