Skip to main content

A Predicative Strong Normalisation Proof for a λCalculus with Interleaving Inductive Types

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1956))

Abstract

We present a new strong normalisation proof for a λ-calculus with interleaving strictly positive inductive types λμ which avoids the use of impredicative reasoning, i.e., the theorem of Knaster-Tarski. Instead it only uses predicative, i.e., strictly positive inductive definitions on the metalevel. To achieve this we show that every strictly positive operator on types gives rise to an operator on saturated sets which is not only monotone but also (deterministically) set based - a concept introduced by Peter Aczel in the context of intuitionistic set theory. We also extend this to coinductive types using greatest fixpoints of strictly monotone operators on the metalevel.

The use of the term interleaving for this situation is due to Ralph Matthes, e.g., see [Mat98]. An alternative would be mutually.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. Submitted to the Journal of Functional Programming, December 1999.

    Google Scholar 

  2. Andreas Abel. A semantic analysis of structural recursion. Master’s thesis, Ludwig-Maximilians-University Munich, 1999. http://www.informatik.uni-muenchen.de/~abel/publications/.

    Google Scholar 

  3. Peter Aczel. Notes on constructive set theory. Available from the WWW, 1997.

    Google Scholar 

  4. Thorsten Altenkirch. Constructions, Inductive Types and Strong Normalization. PhD thesis, University of Edinburgh, November 1993.

    Google Scholar 

  5. Thorsten Altenkirch. Logical relations and inductive/coinductive types. 1998.

    Google Scholar 

  6. Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using generalized inductive types. In Computer Science Logic 99, 1999.

    Google Scholar 

  7. Holger Benl. Starke Normalisierung für die Heyting-Arithmetik mit induktiven Typen. Master’s thesis, Ludwig-Maximillians-Universität, München, 1998.

    Google Scholar 

  8. Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. Inductive data type systems. To appear in Theoretical Computer Science, 1999.

    Google Scholar 

  9. Wilfried Buchholz. The λμ+1-rule. In Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, volume 897 of Lecture Notes in Mathematics, pages 188–233. 1981.

    Google Scholar 

  10. Thierry Coquand and Christine Mohring. Inductively defined types. In P. Löf and G. Mints, editors, LNCS 389, volume 417 of Lecture Notes in Computer Science, pages 50–66. Springer-Verlag, 1989.

    Google Scholar 

  11. Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics. Technical Report Report 62, Programming Methodology Group, Chalmers University, 1991.

    Google Scholar 

  12. Herman Geuvers. Inductive and coinductive types with iteration and recursion. In Workshop on Types for Proofs and Programs, Båastad, pages 193–217, 1992.

    Google Scholar 

  13. J. Y. Girard. Interprétation fonctionelle et élimination des coupures dans l’arithétique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

    Google Scholar 

  14. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.

    Google Scholar 

  15. Tatsuya Hagino. A Categorical Programming Language. PhD thesis, University of Edinburgh, September 1987.

    Google Scholar 

  16. C.B. Jay, G. Bellè, and E. Moggi. Functorial ML. Journal of Functional Programming, 8(6):573–619, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. P. Jouannaud and M. Okada. Abstract data type systems. Theoretical Computer Science, 173, 1997.

    Google Scholar 

  18. Ralph Loader. Equational theories for inductive types. Annals of Pure and Applied Logic, 84:175–217, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1990.

    Google Scholar 

  20. Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

    Google Scholar 

  21. Ralph Matthes. Extensions of System F by Iteration And Primitive Recursion on Monotone Inductive Types. PhD thesis, University of Munich, 1998.

    Google Scholar 

  22. Nax P. Mendler. Inductive Definition in Type Theory. PhD thesis, Cornell University, 1988.

    Google Scholar 

  23. John C. Reynolds. Polymorphism is not set-theoretic. In Gilles Kahn, David B. MacQueen, and Gordon D. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes in Computer Science, pages 145–156, Berlin, 1984. Springer-Verlag.

    Chapter  Google Scholar 

  24. W. W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic Logic, 32(2):198–212, June 1967.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abel, A., Altenkirch, T. (2000). A Predicative Strong Normalisation Proof for a λCalculus with Interleaving Inductive Types. In: Coquand, T., Dybjer, P., Nordström, B., Smith, J. (eds) Types for Proofs and Programs. TYPES 1999. Lecture Notes in Computer Science, vol 1956. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44557-9_2

Download citation

  • DOI: https://doi.org/10.1007/3-540-44557-9_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41517-6

  • Online ISBN: 978-3-540-44557-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics