Advertisement

Objects and Classification

A Natural Convergence
  • Marianne Huchard
  • Robert Godin
  • Amedeo Napoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1964)

Abstract

Classification is a central concept in object-oriented approaches such as object-oriented programming, object-oriented knowledge representation systems (including description logics), object-oriented databases, software engineering and information retrieval.

Nevertheless, research works on classification have often been carried out separately within these different approaches, and they have not always been precisely confronted and connected. The goal of the workshop was to confront these complementary viewpoints on classification, to exhibit and discuss commonalities and differences within these approaches.

Keywords

Class Hierarchy Extensional Classis Conceptual Cluster Software Artifact Multiple Inheritance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Arabie, L.J. Hubert, and G. De Soete, editors. Clustering and Classification. World Scientific Publishers River Edge, NJ (USA), 1996zbMATHGoogle Scholar
  2. [2]
    H. Astudillo. Maximizing object reuse with a biological metaphor. Theory and Practice of Object Systems (TAPOS), 1997.Google Scholar
  3. [3]
    F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, and E. Franconi. An Empirical Analysis of Optimization Techniques for Terminological Representation Systems. Journal of Applied Intelligence, 4(2):109–132, 1994.CrossRefGoogle Scholar
  4. [4]
    E. Bertino and G. Guerrini. Objects with multiple most specific classes. In Proceedings of ECOOP’95, pages 102–126, 1995.Google Scholar
  5. [5]
    G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide. Addison-Wesley, 1999.Google Scholar
  6. [6]
    C. Carpineto and G. Romano. A Lattice Conceptual Clustering System and Its Application to Browsing Retrieval. Machine Learning, 24(2):95–122, 1996.Google Scholar
  7. [7]
    B. Carré and J. Geib. The Point of View notion for Multiple Inheritance. Special issue of Sigplan Notice-Proceedings of ACM ECOOP/OOPSLA’90, 25(10):312–321, 1990.Google Scholar
  8. [8]
    Craig Chambers. Predicate classes. In Proceedings of ECOOP’ 93, Lecture Notes in Computer Science 707, pages 268–296. Springer-Verlag, Berlin, 1993.Google Scholar
  9. [9]
    H. Dicky, C. Dony, M. Huchard, and T. Libourel. On automatic class insertion with overloading. Special issue of Sigplan Notice-Proceedings of ACM OOPSLA’ 96, 31(10):251–267, 1996.Google Scholar
  10. [10]
    F.-M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning in description logics. In G. Brewka, editor, Principles of Knowledge Representation, pages 191–236. CSLI Publications, Stanford (CA), USA, 1996.Google Scholar
  11. [11]
    F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complexity of concept languages. Information and Computation, 134(1):1–58, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    D. H. Fisher, M. J. Pazzani, and P. Langley. Concept Formation: Knowledge and Experience in Unsupervised Learning. Morgan Kaufmann, San Mateo, CA, 1991.Google Scholar
  13. [13]
    R. Godin and H. Mili. Building and Maintaining Analysis-Level Class Hierarchies Using Galois Lattices. Special issue of Sigplan Notice-Proceedings of ACM OOPSLA’93, 28(10):394–410, 1993.Google Scholar
  14. [14]
    R. Godin, H. Mili, G. W. Mineau, R. Missaoui, A. Arfi., and T.-T. Chau. Design of Class Hierarchies Based on Concept (Galois) Lattices. Theory And Practice of Object Systems, 4(2), 1998.Google Scholar
  15. [15]
    R. Godin, R. Missaoui, and A. April. Experimental Comparison of Navigation in a Galois Lattice with Conventional Information Retrieval Methods. International Journal of Man-Machine Studies, pages 747–767.Google Scholar
  16. [16]
    M. Huchard and H. Leblanc. Computing Interfaces in Java (short paper). In proceedings of Automated Software Engineering (ASE’2000), 11–15 September, Grenoble, France.Google Scholar
  17. [17]
    N. Jardine and R. Sibson. Mathematical Taxonomy. John Wiley & Sons Ltd, London, 1971.zbMATHGoogle Scholar
  18. [18]
    B.B. Kristensen, O.L. Madsen, B. Møller-Pedersen, and K. Nygaard. Classification of Actions or Inheritance also for Methods. In Proceedings of Ecoop’87, Paris, Special issue of Bigre 54, Lecture Notes in Computer Science 276, pages 109–118, 1987.Google Scholar
  19. [19]
    R.M. MacGregor and D. Brill. Recognition Algorithms for the Loom Classifer. In Proceedings of AAAI’92, San Jose, California, pages 774–779, 1992.Google Scholar
  20. [20]
    R. Michalski and R. E. Stepp. Learning from Observation: Conceptual Clustering. In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learning: an Artificial Intelligence Approach. 1978.Google Scholar
  21. [21]
    B. Nebel. Reasoning and Revision in Hybrid Representation Systems. Lecture Notes in Artificial Intelligence 422. Springer Verlag, Berlin, West Germany, 1990.zbMATHGoogle Scholar
  22. [22]
    G.T. Nguyen and D. Rieu. Schema evolution in object-oriented database systems. Data and Knowledge Engineering, 4:43–67, 1989.CrossRefGoogle Scholar
  23. [23]
    R. Prieto-Diaz. Implementing Faceted Classification for Software Reuse. Communications of the ACM, 34(5):88–97, 1991.CrossRefGoogle Scholar
  24. [24]
    R. Prieto-Diaz and P. Freeman. Classifying Software for Reusability. IEEE Software, 4(1):6–16, 1987.CrossRefGoogle Scholar
  25. [25]
    J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object Oriented Modeling and Design. Prentice Hall Inc. Englewood Cliffs, 1991.Google Scholar
  26. [26]
    G. Snelting and F. Tip. Reengineering class hierarchies using concept analysis. In Proceedings of the ACM SIGSOFT 6th International Symposium on the Foundations of Software Engineering (FSE-98), pages 99–110, Lake Buena Vista, FL, USA, 1998.Google Scholar
  27. [27]
    R.R. Sokal and P.H.A. Sneath. Principles of Numerical Taxonomy. Freeman, San Francisco (CA), USA, 1963.Google Scholar
  28. [28]
    P. Steyaert, W. Codenie, T. D’Hondt, K. De Hondt, C. Lucas, and M. Van Limberghen. Nested mixin methods in Agora. In Proceedings of ECOOP’93, Lecture Notes in Computer Science 707, pages 197–219. Springer-Verlag, Berlin, 1993.Google Scholar
  29. [29]
    P. Steyaert and W. De Meuter. A marriage of class-and object-based inheritance without unwanted children. In Proceedings of ECOOP’95, Lecture Notes in Computer Science 952. Springer-Verlag, Berlin, 1995.Google Scholar
  30. [30]
    J.P. Sutcliffe. Concept, Class, and Category in the Tradition of Aristotle. In I. Van Mechelen, J. Hampton, R.S. Michalski, and P. Theuns, editors, Categories and Concepts. Theoretical Views and Inductive Data Analysis, pages 35–65. Academic Press, London, 1993.Google Scholar
  31. [31]
    R. Wille. Concept lattices and conceptual knowledge systems. Computers Math. Applic, 23:493–513, 1992.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Marianne Huchard
    • 1
  • Robert Godin
    • 2
  • Amedeo Napoli
    • 3
  1. 1.LIRMMMontpellier cedex 5France
  2. 2.Département d’informatique C.P.8888, Succ.CVUniversité du Q uébec à MontréalMontréal (Québec)Canada
  3. 3.LORIA - UMR 7503(CNRS - INRIA - Universités de Nancy)Villers-lès-Nancy CedexFrance

Personalised recommendations