Skip to main content

Admission Control for Distribution of Smoothed Video Using Patching Algorithms

  • Conference paper
  • First Online:
  • 200 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1989))

Abstract

The resource sharing techniques in Multimedia on demand systems allow the simultaneous service of a large number of requests with considerable savings in terms of network bandwidth and server resources. In this paper, we report the results of a study that analyzes several key aspects of video distribution systems, in the hypothesis of exploiting patching techniques. Synthetically, such a technique consists in serving a client request by an existing stream for that video object (if there is any) which is buffered in the client equipment and simultaneously a new stream is requested to the server for the frames already transmitted. For such systems, a performance analysis has been carried out, exploiting analytical and simulation models. The results show the main system performance (efficiency, aggregate bandwidth, etc.) allowing to decide about the acceptance of a new service request based on QoS criteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li, V. O. K., Liao, W., Qiu, X., Wong, E.W.M.: Performance Model of Interactive Video on-Demand Systems. IEEE JSAC,Vol.14, No.6 (August 1996) 1099–1109

    Google Scholar 

  2. Gemmell, D. J., Vin, H. M., Kandhlur, D. D., Venkhat Rangan, P.: Multimedia storage servers: a tutorial and survey. IEEE Computer, Vol. 28, No. 5 (May 1995) 40–49

    Article  Google Scholar 

  3. Naussbaumer, J.P., Patel, B.V.: Network requirement for Interactive Video on Demand. IEEE JSAC, Vol. 13, No. 5 (June 1995) 779–787

    Google Scholar 

  4. Shachnai, H., Yu, P.S.: On analytic modeling of multimedia batching schemes. Performance Evaluation, Vol. 33 (1998)

    Google Scholar 

  5. Lau, S.W., Lui, J.C.S., Golubchik, L.: Merging video streams in a multimedia storage server: complexity and heuristics. Multimedia Systems, Vol. 6 (1998) 29–42

    Article  Google Scholar 

  6. Golubchik, L., Lui, J.C.S., Muntz, R.: Reducing I/O demand in Video on Demand storage servers. Proceedings of the ACM SIGMETRICS/PERFORMANCE’ 95 Conference, Ottawa, Canada (1995)

    Google Scholar 

  7. Almeroth, K.C., Ammar, M.H.: The use of Multicast delivery to provide a scalable and interactive Video-on-Demand service. IEEE JSAC, Vol. 14, No. 6 (August 1996) 1110–1122

    Google Scholar 

  8. Kamath, M., Towsley, D., Ramamritham, K.: Continuos media sharing in multimedia database systems. Fourth International Conference on Database Systems for Advanced Applications (DASFAA’95), Singapore (1995) 79–86

    Google Scholar 

  9. Sen, S., Gao, L., Rexford, J., Towsley, D.: Optimal Patching Schemes for Efficient Multimedia Streaming. Proc. IEEE NOSSDAV’99, Basking Ridge, NJ (June 99)

    Google Scholar 

  10. Gao, L., Towsley, D.: Supplying instantaneous Video-on Demand services using controlled multicast. IEEE Multimedia Computing and Systems (June 1999)

    Google Scholar 

  11. Salehi, J. D., Zhang, Zhi-li, Kurose, J., Towsley, D.: Supporting stored video: reducing rate variability and end-to-end resource requirements through optimal smoothing. IEEE/ACM Transactions on networking, Vol. 6, No. 4 (August 1998) 397–410

    Article  Google Scholar 

  12. Zhang, Zhi-li, Kurose, J., Salehi, J. D., Towsley, D.: Smoothing, statistical multiplexing, and call admission control for stored video. IEEE JSAC, Vol. 15, No. 6 (August 1997) 1148–1166

    Google Scholar 

  13. Skelly, P., Schwartz, M., Dixit, S.: A histogram based model for video traffic behavior in an ATM multiplexer. IEEE Transactions on networking, Vol. 1, No. 4 (August 1993) 446–458

    Article  Google Scholar 

  14. Knightly, E. W., Shroff, N. B.: Admission control for statistical QoS: theory and practice. IEEE Network (March–April 1999) 19–29

    Google Scholar 

  15. Tortorici, M.: Controllo di ammissione in sistemi multicast di flussi video. Dr. Eng. Degree thesis-in Italian (April 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boggia, G., Camarda, P., Tortorici, M. (2001). Admission Control for Distribution of Smoothed Video Using Patching Algorithms. In: Marsan, M.A., Bianco, A. (eds) Quality of Service in Multiservice IP Networks. QoS-IP 2001. Lecture Notes in Computer Science, vol 1989. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44554-4_27

Download citation

  • DOI: https://doi.org/10.1007/3-540-44554-4_27

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41512-1

  • Online ISBN: 978-3-540-44554-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics