Skip to main content

Controlling Light Confinement by Excitation of Localized Surface Plasmons

  • Chapter
  • First Online:
Near-Field Optics and Surface Plasmon Polaritons

Part of the book series: Topics in Applied Physics ((TAP,volume 81))

Abstract

Localized surface plasmons can be used to control near-field optical phenomena in the subwavelength range. Specifically, this chaper reviews recent results which show that localized surface plasmons can confine the optical intensity down to nanoscopic dimensions. The discussion first considers how a collection-mode near-field optical microscope can observe the squeezing of the plasmon field of metallic nanostructures deposited on a flat surface. Numerical simulations then provide illustrations of the confined fields associated with nanostructures which are feasible using current microfabrication techniques. Finally, we present arguments which explain how localized surface plasmons can deliver a significant amount of power to the very end of a tetrahedral tip used as the light source of an illumination-mode near-field optical microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Krenn, W. Gotschy, D. Somitsch, A. Leitner, F. R. Aussenegg, Appl. Phys. A 61, 541 (1995)

    Article  ADS  Google Scholar 

  2. J. R. Krenn, R. Wolf, A. Leitner, F. R. Aussenegg, Opt. Commun. 137, 46 (1997)

    Article  ADS  Google Scholar 

  3. P. Dawson, F. de Fornel, J. P. Goudonnet, Phys. Rev. Lett. 72, 2927 (1994)

    Article  ADS  Google Scholar 

  4. I. Smolyaninov, D. L. Mazzoni, C. C. David, Phys. Rev. Lett. 77, 3877 (1996)

    Article  ADS  Google Scholar 

  5. A. V. Shchegrov, I. V. Novikov, A. A. Maradudin, Phys. Rev. Lett. 78, 4269 (1997)

    Article  ADS  Google Scholar 

  6. S. I. Bozhevolnyi, V. A. Markel, V. Coello, Phys. Rev. B 58, 11441 (1998)

    Article  ADS  Google Scholar 

  7. J. R. Krenn, A. Dereux, J. C. Weber, E. Bourillot, Y. Lacrouk, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, C. Girard, Phys. Rev. Lett. 82, 2590 (1999)

    Article  ADS  Google Scholar 

  8. S. Grésillon, L. Aigouy, A. C. Baccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, V. M. Shalaev, Phys. Rev. Lett. 82, 4520 (1999)

    Article  ADS  Google Scholar 

  9. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inonye, D. W. Pohl, Phys. Rev. Lett. 77, 1889 (1996)

    Article  ADS  Google Scholar 

  10. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)

    Article  ADS  Google Scholar 

  11. D. Courjon C. Bainier, Rep. Prog. Phys. 57, 989 (1994)

    Article  ADS  Google Scholar 

  12. U. C. Fischer, J. Opt. Soc. Am B 3, 1239 (1986)

    Article  ADS  Google Scholar 

  13. U. Fischer D. Pohl, Phys. Rev. Lett. 62, 458 (1989)

    Article  ADS  Google Scholar 

  14. M. Specht, J. D. Pedarnig, W. M. Heckl, T. W. Hänsch, Phys. Rev. Lett. 68, 476 (1992)

    Article  ADS  Google Scholar 

  15. J. Koglin, U. C. Fischer, H. Fuchs, Phys. Rev. B 55, 249 (1997)

    Article  Google Scholar 

  16. S. I. Bozhevolnyi, F. A. Pudonin, Phys. Rev. Lett. 78, 2823 (1997)

    Article  ADS  Google Scholar 

  17. J. R. Krenn et al., Phys. Rev. B 60, 5029 (1999)

    Article  ADS  Google Scholar 

  18. C. Girard, A. Dereux, C. Joachim, Europhys. Lett. 44, 686 (1998)

    Article  ADS  Google Scholar 

  19. C. Girard, A. Dereux, C. Joachim, Phys. Rev. E 59, 6097 (1999)

    Article  ADS  Google Scholar 

  20. J. C. Weeber et al., Phys. Rev. B 60, 9061 (1999)

    Article  ADS  Google Scholar 

  21. R. C. Reddick, R. J. Warmack, T. L. Ferrell, Phys. Rev. B 39, 767 (1989)

    Article  ADS  Google Scholar 

  22. C. Girard, A. Dereux, O. J. F. Martin, M. Devel, Phys. Rev. B 52, 2889 (1995)

    Article  ADS  Google Scholar 

  23. J. C. Weeber et al., Phys. Rev. Lett. 77, 5332 (1996)

    Article  ADS  Google Scholar 

  24. A. Dereux et al., Ann. Phys. (Paris) 23, C1 (1998)

    Google Scholar 

  25. C. Girard, A. Dereux, Rep. Prog. Phys. 59, 657 (1996)

    Article  ADS  Google Scholar 

  26. P. Török, P. Varga, Z. Laczik, G. R. Booker, J. Opt. Soc. Am. A 12, 325 (1995)

    Article  ADS  Google Scholar 

  27. P. Török, P. Varga, Z. Laczik, G. R. Booker, J. Opt. Soc. Am. A 12, 2136 (1995)

    Article  ADS  Google Scholar 

  28. P. Török, P. Varga, Z. Laczik, G. R. Booker, J. Opt. Soc. Am. A 13, 2232 (1996)

    Article  ADS  Google Scholar 

  29. D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik (Ed.) (Academic, New York 1985) Chap. II.1, p. 286

    Google Scholar 

  30. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)

    Google Scholar 

  31. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters, Springer Ser. Mater. Sci. 25, (Springer, Berlin, Heidelberg 1995)

    Google Scholar 

  32. L. Novotny, D. W. Pohl, P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994)

    Article  ADS  Google Scholar 

  33. J. Ferber, U. C. Fischer, N. Hagedorn, H. Fuchs, Appl. Phys. A 69, 581 (1999)

    Article  ADS  Google Scholar 

  34. U. C. Fischer, J. Koglin, A. Naber, A. Raschewski, R. Tiemann, H. Fuchs, Near Field Optics and Scanning Near Field Optical Microscopyin Quantum Optics of Confined Systems M. Ducloy, D. Bloch. (Eds.) NATO ASI Ser. E 314 (Kluwer, Dordrechet 1996)

    Google Scholar 

  35. U. C. Fischer, in Scanning Probe Microscopy: Analytical Methods, R. Wiesendanger (Ed.) (Springer, Berlin, Heidelberg 1998)

    Google Scholar 

  36. A. Sommerfeld, Vorlesungen über theoretische Physik (Harri Deutsch, Thun 1977), Vol. III Elektrodynamik

    Google Scholar 

  37. A. Dereux, J. P. Vigneron, P. Lambin, A. A. Lucas, Phys. Rev. B 38, 5438 (1988)

    Article  ADS  Google Scholar 

  38. K. L. Kliewer, R. Fuchs, Theory of Dynamical Properties of Dielectric Surfaces Adv. Chem. Phys. 27, I. Prigogine (Ed.) (Wiley, New York 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fischer, U.C., Dereux, A., Weeber, JC. (2001). Controlling Light Confinement by Excitation of Localized Surface Plasmons. In: Kawata, S. (eds) Near-Field Optics and Surface Plasmon Polaritons. Topics in Applied Physics, vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44552-8_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44552-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41502-2

  • Online ISBN: 978-3-540-44552-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics