Skip to main content

Of Vortices and Vortical Layers: An Overview

  • Conference paper
  • First Online:
Vortex Structure and Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 555))

Abstract

A theoretical overview of local flow models such as hyperbolic point flows or localized vorticity structures is presented. Vortex layers and tubes are particularly emphazised. Various exact Navier-Stokes or Euler solutions are introduced to analyse generic features of vorticity dynamics: vorticity gradients, vorticity stretching, interplay between axial and azimuthal vorticity, effect of a large scale strain rate or the existence of a helical symmetry. The linear stability of some of these basic flows is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poincaré H., Théorie des tourbillons. Editions J Gabay (1990).

    Google Scholar 

  2. Batchelor G.K., An Introduction to Fluid Dynamics. Cambridge University Press (1967).

    Google Scholar 

  3. Acheson D.J., Elementary Fluid Dynamics. Clarendon Press Oxford (1990).

    Google Scholar 

  4. Sa.man P.G., Vortex Dynamics. Cambridge University Press (1992).

    Google Scholar 

  5. Tanaka M. and Kida S., “Characterization of vortex tubes and sheets”Phys. Fluids A 5, 2079–2082 (1993).

    Article  ADS  Google Scholar 

  6. Cadot O., Douady S. and Couder Y., “Characterization of the low pressure filaments in three-dimensional turbulent shear flow.”Phys. Fluids 7, 630–646 (1995).

    Article  ADS  Google Scholar 

  7. Villermaux E., Sioux B. and Gagne Y. “Intense vortical structures in gridgenerated turbulence.”Phys. Fluids 7, 2008–2013 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  8. Vincent A. and Meneguzzi M., “The spatial structure and statistical properties of homogeneous turbulence.”J. Fluid Mech. 225, 1–25 (1991).

    Article  MATH  ADS  Google Scholar 

  9. Jiménez J., Wray A. A., Saffman P. G. and Rogallo R. S., “The structure of intense vorticity in homogeneous isotropic turbulence.”J. Fluid Mech. 255, 65–90 (1993).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Jiménez J. and Wray A. A., “On the characteristics of vortex filaments in isotropic turbulence.”J. Fluid Mech. 373, 255–285 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Pullin D.I. and Saffman P.G., “Vortex dynamics in turbulence.”Ann.Rev.Fluid Mech. 30, 31–51 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  12. Hatakeyama N. and Kambe T., “Statistical laws of random strained vortices in turbulence.”Phys.Rev.Lett. 79, 1257–1260 (1997).

    Article  ADS  Google Scholar 

  13. Misra A. and Pullin D.I., “A vortex based subgrid stress model for large eddy simulation.”Phys. Fluids 9, 2443–2454 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Drazin P.G. and Reid W.H., Hydrodynamic Stability. Cambridge University Press (1981).

    Google Scholar 

  15. Huerre P. and Rossi M., Hydrodynamic instabilities in open flows. in Hydrodynamics and Nonlinear Instabilities, pp. 81–294, Editors Godrèche C., Manneville P.; Cambridge University Press (1998).

    Google Scholar 

  16. Lundgren T.S., “Strained spiral vortex model for turbulent fine structure. ” Phys. Fluids 25, 2193–2203 (1982).

    Article  MATH  ADS  Google Scholar 

  17. Gibbon J.D., Fokas A.S. and Doering C.R., “Dynamically stretched vortices as solution of the 3D Navier-Stokes equations.” Physica D 132, 497–510 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Donaldson C.D. and Sullivan R.D., “Behaviour of solutions of the Navier-Stokes equations for a complete class of three-dimensional viscous vortices.”In Proc.Heat Transfer and Fluid Mech. Inst. Stanford University (1960).

    Google Scholar 

  19. Bellamy-Knights P.G., “An unsteady vortex solution of the Navier-Stokes equations. ” J. Fluid Mech. 41, 673–687 (1970).

    Article  MATH  ADS  Google Scholar 

  20. Alekseenko S.V., Kuibin P.A., Okulov V.L. and Shtork S.I., ”Helical vortices in swirl flow.” J.Fluid Mech. 382, 195–243 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Kerr O.S. and Dold J.W., “Periodic steady vortices in a stagnation-point flow.” J. Fluid Mech. 276, 307–325 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Corcos G.M. and Lin S.J., “The mixing layer: deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion.” J. Fluid Mech.139, 67–95 (1984).

    Article  MATH  ADS  Google Scholar 

  23. Lin S.J. and Corcos G.M., “The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices.” J. Fluid Mech. 141, 139–178 (1984).

    Article  MATH  ADS  Google Scholar 

  24. Neu J.C., “The dynamics of stretched vortices.” J. Fluid Mech. 143, 253–276 (1984).

    Article  MATH  ADS  Google Scholar 

  25. Passot T., Politano H., Sulem P.L. Angilella J.R. and Meneguzzi M., “Instability of strained vortex layers and vortex tube formation in homogeneous turbulence.” J. Fluid Mech. 282, 313–338 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Maxworthy T., Hopfinger E.J. and Redekopp L.G., “Wave motions on vortex cores.” J. Fluid Mech. 151, 141–165 (1985).

    Article  ADS  Google Scholar 

  27. Malkus W.V.R., “An experimental study of global instabilities due to tidal (elliptical) distorsion of a rotating elastic cylinder.” Geophys. Astrophys. Fluid Dyn. 48, 123–134 (1989).

    Article  ADS  Google Scholar 

  28. Gledzer E.B., Dolzhansky F.V., Obukhov A.M. and Ponomarev V.M., “An Experimental and theoretical study of the stability of motion of a liquid in an elliptical cylinder.” Izv.Atmos.Ocean.Phys. 11, 617–622 (1975).

    Google Scholar 

  29. Gledzer E.B. and Ponomarev V.M., “Instability of bounded flows with elliptical streamlines.” J.Fluid Mech. 240, 1–30 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Eloy C., “Instabilité multipolaire de tourbillons.” Thèse de l’université Aix-Marseille II (2000).

    Google Scholar 

  31. Waleffe F., “The three-dimensional instability of a strained vortex and its relation to turbulence.” MIT thesis (1989).

    Google Scholar 

  32. Emanuel K.A., “A note on the stability of columnar vortices.” J.Fluid Mech. 145, 235–238 (1984).

    Article  MATH  ADS  Google Scholar 

  33. Le Dizès S., Rossi M. and Moffatt H.K., “On the three-dimensional instability of an elliptical vortex subjected to stretching.” Phys. Fluids 8, 2084–2090 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Eloy C. and Le Dizès S., “Three-dimensional instability of Burgers and Lamb-Oseen vortices in a strain field.” J.Fluid Mech. 378, 145–166 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  35. Leweke T. and Williamson C.H.K., “Cooperative elliptic instability of a vortex pair.” J. Fluid Mech. 360, 85–119 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  36. Sipp D., “Instabilités dans les écoulements tourbillonnaires.” Thèse de l’Ecole Polytechnique (1999).

    Google Scholar 

  37. Bayly B.J., Orszag S.A. and Herbert T., “Instability mechanisms in shear-flow transition.”, Ann. Rev. Fluid Mech. 20, 359–39 (1988).

    Article  ADS  Google Scholar 

  38. Leweke T. and Williamson C.H.K., “Three-dimensional instabilities in wake transition.” Eur. J. Mech. B/ Fluids 17, 571–586 (1998).

    Article  MATH  Google Scholar 

  39. Green S.I, Fluid Vortices. Ed. Green S.I, Kluwer Academic Publishers (1995).

    Google Scholar 

  40. Le Dizès S. (Ed), Dynamics and Statistics of Concentrated Vortices in Turbulent Flow., Euromech Colloquium 364, Eur. J. Mech. B / Fluids 17, 4 (1998).

    Google Scholar 

  41. Maurel A. and Petitjeans P. (Eds), Structure and Dynamics of Vortices., Lecture notes in Physics. Springer Verlag (2000).

    Google Scholar 

  42. Ohkitani K. and Kishiba S., “Nonlocal nature of vortex stretching in an inviscid fluid.” Phys. Fluids 7, 411–421 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Tsinober A., “Is concentrated vorticity that important ?” Eur. J. Mech. B / Fluids 17, 4, 421–449 (1998).

    Article  MATH  ADS  Google Scholar 

  44. Kida S. and Miura H., “Analysis of vortical structures.” Eur. J. Mech. B / Fluids 17, 4, 471–487 (1998).

    Article  MATH  ADS  Google Scholar 

  45. Verzicco R., Jimenez J. and Orlandi P., “On steady columnar vortices under local compression.” J.Fluid Mech. 299, 367–388 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Moffatt H. K., Kida S. and Ohkitani K., “Stretched vortices-the sinews of turbulence; large-Reynolds-number asymptotics.” J. Fluid Mech. 259, 241–264 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  47. Ting L. and Tung C., “Motion and decay of a vortex in a nonuniform stream.” Phys. Fluids 8, 1039–1051 (1965).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. Craik A.D.D. and Criminale W.O., “Evolution of wavelike disturbances in shear flows: a class of exact solutions of the Navier-Stokes equations.” Proc.R. Soc. Lond. A. 406, 13–26 (1986).

    Google Scholar 

  49. Craik A.D.D. and Allen H.R., “The stability of three-dimensional time-periodic flows with spatially uniform strain rates.” J.Fluid Mech. 23, 613–627 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  50. Foster G.K. and Craik A.D.D., “The stability of three-dimensional time-periodic flows with ellipsoidal stream surfaces.” J.Fluid Mech. 324, 379–391 (1996).

    Article  ADS  Google Scholar 

  51. Rossi L.F. and Graham-Eagle J., “On the existence of two-dimensional, localized, rotating self-similar vortical structures.” Preprint (2000).

    Google Scholar 

  52. Dritschel D., “On the persistence of non-axisymmetric vortices in inviscid twodimensional flows.” J.Fluid Mech. 371, 141–155 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  53. Kida S., “Motion of an elliptic vortex in a uniform shear flow.” J. Phys.Soc. Japan 50, 3517–3520 (1981).

    Article  ADS  Google Scholar 

  54. Moore D.W. and Saffman P.G., ”The instability of a straight vortex filament in a strain field.” Proc. R. Soc. Lond. A. 346, 413–425 (1975).

    Google Scholar 

  55. Jiménez J., Moffatt H.K. and Vasco C., “The structure of the vortices in freely decaying two-dimensional turbulence.” J. Fluid Mech. 313, 209–222 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. Melander M.V. and Hussain F., “Core Dynamics on a vortex column.” Fluid Dynamics Research 13, 1–37 (1994).

    Article  ADS  Google Scholar 

  57. Batchelor G.K., “Axial flow in trailing line vortices.” J.Fluid Mech. 20, 645–658 (1964).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  58. Leibovitch S., “Vortex stability and breakdown: survey and extension.” AIAA J. 22, 1192–1206 (1984).

    Article  ADS  Google Scholar 

  59. Khomenko G. and Babiano A., “Quasi-three-dimensional flow above the Ekman Layer.” Phys.Rev.Lett. 83, 1, 84–87 (1999).

    Article  ADS  Google Scholar 

  60. Robinson A.C. and Saffman P.G., “Stability and structure of stretched vortices.” Stud. Appl. Math. 70, 163–81(1984).

    MATH  ADS  MathSciNet  Google Scholar 

  61. Moffatt H.K., “Vortices subjected to non-axisymmetric strain-unsteady asymptotic evolution.” in Asymptotic Modelling in Fluid Mechanics, 29–35, Springer Verlag (1994).

    Google Scholar 

  62. Landman M.J., “On the generation of helical waves in circular pipe flow.” Phys. Fluids 2, 738–747 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  63. Dritschel D., “Generalized helical Beltrami flows in hydrodynamics and magnetohydrodynamics.” J.Fluid Mech. 222, 525–541 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  64. Kelvin (Lord), “Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates.” Phil. Mag. 24, 188–196 (1887).

    Google Scholar 

  65. Farrell B.F. and Ioannou P.J., “Generalized stability theory. Part I: autonomous operator.” J. Atm. Sci. 53, 2025–2040 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  66. Craik A.D.D., “The stability of unbounded two-and three-dimensional flows subject to body forces: some exact solutions.” J.Fluid Mech. 198 275–292 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. Cambon C., Teissedre C. and Jeandel D., “Étude d’effets couplés de déformation et de rotation sur la turbulence homogène.” J.Méc.Th.Appl. 4, 629–657 (1985).

    MATH  MathSciNet  Google Scholar 

  68. Lagnado R.R., Phan-Thien N. and Leal L.G., “The stability of two-dimensional linear flows.” Phys. Fluids 27, 1094–1101 (1984).

    Article  MATH  ADS  Google Scholar 

  69. Andreotti B., “Action et réaction entre étirement et rotation: du laminaire au turbulent.” Th`ese Paris VII (1999).

    Google Scholar 

  70. Taylor G.I. “The formation of emulsions in definable fields of flow.” Proc. R.Soc.Lond.A 146, 501–523 (1934).

    Google Scholar 

  71. Beronov K.N and Kida S., “Linear two-dimensional stability of a Burgers vortex layer.” Phys. Fluids 8, 1024–1035 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  72. Swinney H.L and Gollub J.P. (Eds) Hydrodynamic instabilities and the transition to turbulence. Springer Verlag (1981).

    Google Scholar 

  73. Bayly B.J., “Three-dimensional centrifugal-type instability in an inviscid twodimensional flow.” Phys. Fluids 31, 56–64 (1988).

    Article  MATH  ADS  Google Scholar 

  74. Kelvin (Lord), “Vibrations of a columnar vortex.” Phil. Mag. 10, 155–168 (1880).

    Google Scholar 

  75. Moore D.W. and Saffman P.G., “The motion of a vortex filament with axial flow.” Phil. Trans. R. Soc. Lond. A. 272, 403–429 (1972).

    Article  MATH  ADS  Google Scholar 

  76. Callegari A.J.and Ting L., “Motion of a curved vortex filament with decaying vortical core and axial velocity.” SIAM. J. Appl. Math 35, 148–175 (1978).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  77. Fukumoto, Y. and Miyazaki, T., “Three-dimensional distorsions of a vortex filament with axial velocity.” J.Fluid Mech. 222, 369–416 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  78. Kida S., “A vortex filament moving without change of form.” J.Fluid Mech. 112, 397–409 (1981).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  79. Arendt S., Fritts D.C. and Andreassen O., “The initial value problem for Kelvin vortex waves.” J.Fluid Mech. 344, 181–212 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  80. Fultz, D., “A note on the overstability of the elastoid-inertia oscillations of Kelvin, Solberg and Bjerknes.” J. Met. 16, 199–208 (1959).

    Article  Google Scholar 

  81. McEwan A.D., “Inertial oscillations in a rotating fluid cylinder.” J.Fluid Mech. 40, 603–640 (1970).

    Article  ADS  Google Scholar 

  82. Manasseh J.J., “Breakdown regimes of inertia waves in a precessing cylinder.” J. Fluid Mech. 243, 261–296 (1992).

    Article  ADS  Google Scholar 

  83. Kobine J.J., “Inertial wave dynamics in a rotating and precessing cylinder.” J. Fluid Mech. 303, 233–252 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  84. Arendt S., Fritts D.C. and Andreassen O., “Kelvin twist waves in the transition to turbulence.” Eur. J. Mech. B / Fluids 17, 595–604 (1998).

    Article  MATH  Google Scholar 

  85. Samuels D.C., “A finite length instability of vortex tubes.” Eur. J. Mech. B / Fluids 17, 4, 587–594 (1998).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  86. Lifschitz A. and Fabijonas B., “A new class of instabilities of rotating fluids.”, Phys. Fluids 8, 2239–2241 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  87. Kerswell R.R., “Secondary instabilities in rapidly rotating fluids: inertial wave breakdown.” J.Fluid Mech. 382, 283–306 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  88. Mason D.M. and Kerswell R.R., “Nonlinear evolution of the elliptical instability: an example of inertial breakdown.” J.Fluid Mech. 396, 73–108 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  89. Pierrehumbert R.T., “Universal short-wave instability of two-dimensional eddies in an inviscid fluid.” Phys.Rev.Lett. 57, 2157–2160 (1986).

    Article  ADS  Google Scholar 

  90. Bayly B.J., “Three-dimensional instability of elliptical flow.”, Phys. Fluids 57, 2160–2163 (1986).

    MathSciNet  Google Scholar 

  91. Landman M.J. and Saffman P.G., “The three-dimensional instability of strained vortices in a viscous fluid.” Phys. Fluids 30, 2339–2342 (1987).

    Article  ADS  Google Scholar 

  92. Waleffe F., “On the three-dimensional instability of strained vortices.” Phys. Fluids A 2, 76–80 (1990).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  93. Robinson A.C. and Saffman P.G., “Three-dimensional stability of an elliptical vortex in a straining field. ” J.Fluid Mech. 142, 451–466 (1984).

    Article  MATH  ADS  Google Scholar 

  94. Le Dizès S. and Eloy C., “Short-wavelength instability of a vortex in a multipolar strain field.” Phys. Fluids 11, 500–502 (1999).

    Article  ADS  MATH  Google Scholar 

  95. Lundgren T.S. and Mansour M.N., “Transition to turbulence in an elliptic vortex.” J. Fluid Mech. 307, 43–62 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  96. Howard L.N. and Gupta A.S., “On the hydrodynamic and hydromagnetic stability of swirling flow.” J.Fluid Mech. 14, 463–476 (1962).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  97. Ash R.L. and Khorrami M.R., “Vortex stability.” In Fluid Vortices, ed. Green S.I, Chap. VIII, 317–372 Kluwer (1995).

    Google Scholar 

  98. Leibovitch S. and Stewarston K., “A su.cient condition for the instability of columnar vortices.” J. Fluid Mech., 335–356 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  99. Lessen M., Singh P.J. and Paillet P., “The stability of a trailing line vortex. Part 1 Inviscid theory” J. Fluid Mech. 63, 753–763 (1974).

    Article  MATH  ADS  Google Scholar 

  100. Mayer E.W. and Powell K.G., “Viscous and inviscid instabilities of a trailing line vortex.” J. Fluid Mech. 245, 91–114 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  101. Khorrami M.R., “On the viscous modes of instability of a trailing line vortex.” J.Fluid Mech. 225, 197–212 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  102. Olendraru C., Sellier A., Rossi M. and Huerre P., “Inviscid instability of the Batchelor vortex: absolute-convective transition and spatial branches.” Phys. Fluids 11, 1805–1820 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  103. Delbende I., Chomaz J.-M. and Huerre P., “Absolute/ convective instabilities in the Batchelor vortex: a numerical study of the linear impulse response.” J. Fluid Mech. 355, 229–254 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  104. Olendraru C., “Etude spatio-temporelle de jets et sillages tournants.” Thèse de l’Ecole Polytechnique (1999).

    Google Scholar 

  105. Leibovitch S. and Holmes P., “Global stability of a vortex subjected to stretching.” Phys. Fluids 24, 548–549 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  106. Prochazka A. and Pullin D. I., “On the two-dimensional stability of the axisymmetric Burgers vortex.” Phys. Fluids 7, 1788–1790 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  107. Rossi M. and Le Dizès S., “Three-dimensional temporal spectrum of stretched vortices.” Phys.Rev.Lett. 78, 2567–69 (1997).

    Article  ADS  Google Scholar 

  108. Ohkitani K. and Gibbon J. D., “Numerical study of singularity formation in a class of Euler and Navier-Stokes flows.” preprint (2000).

    Google Scholar 

  109. Delbende I., Le Dizès S. and Rossi M., “Three-dimensional linear stability of stretched vortices.” In preparation.

    Google Scholar 

  110. Fernandez-Feria R., Fernandez de La Mora J., Perez-Saborid and Barrero A. “Conically similar swirling flows at high Reynolds number.” Q.J.Mech.Appl. Math 52, 1–53 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  111. Shtern V. and Hussain F., “Collapse, symmetry breaking, and hysteresis in swirling flows.” Ann. Rev. Fluid Mech. 31, 537–566 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  112. Wang S. and Rusak Z., “On the stability of non-columnar swirling flows.” Phys. Fluids 8, 1017–1023 (1996).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  113. Leibovitch S. and Kribus A., “Large amplitude wavetrains and solitary waves in vortices.” J. Fluid Mech. 216, 459–504 (1990).

    Article  ADS  Google Scholar 

  114. Hopfinger E.J. and van Hejist G.J.F., “Vortices in rotating fluids.” Ann.Rev. Fluid Mech., 25 241–289 (1993).

    Article  ADS  Google Scholar 

  115. Carnevale G.F. et al, “Three-dimensional perturbed vortex tube in a rotating flow.” J. Fluid Mech. 341, 127–163 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  116. Leblanc S., “Instabilités tridimensionnelles dans un fluide en rotation.” Thèse de l’Ecole Centrale de Lyon (1997).

    Google Scholar 

  117. Bershader D., “Compressible Vortices.” in Fluid Vortices. Ed. Green S.I, Kluwer Academic Publishers (1995).

    Google Scholar 

  118. Loiseleux Th., “Instabilités dans les jets tournants.” Thèse de l’Ecole Polytechnique (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-VerlagBerlin Heidelberg

About this paper

Cite this paper

Rossi, M. (2000). Of Vortices and Vortical Layers: An Overview. In: Maurel, A., Petitjeans, P. (eds) Vortex Structure and Dynamics. Lecture Notes in Physics, vol 555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44535-8_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44535-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67920-2

  • Online ISBN: 978-3-540-44535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics