Skip to main content

A Criterion of Centrifugal Instabilities in Rotating Systems

  • Conference paper
  • First Online:
Vortex Structure and Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 555))

Abstract

This article deals with the stability of incompressible inviscid 2D planar flows in a rotating frame. We give a sufficient condition for such flows to undergo 3D short-wave centrifugal-type instabilities. This criterion states that a steady 2D planar flow subject to rotation Ω is unstable if there exists a streamline for which at each point \( 2\left( {V/\mathcal{R}{\text{ + }}\Omega } \right)\left( {\omega + 2\Omega } \right) < 0 \) where ω is the vorticity of the streamline, R is the local algebraic radius of curvature of the streamline and V is the local norm of the velocity. If this condition is satisfied then the flow is unstable to short-wavelength perturbations. When the streamlines are closed, it is further shown that a localized unstable normal mode can be constructed in the vicinity of a streamline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.J. Pedley, “On the stability of viscous flow in a rapidly rotating pipe,” J. Fluid Mech. 35, 97 (1969).

    Article  MATH  ADS  Google Scholar 

  2. P. Bradshaw, “The analogy between streamline curvature and buoyancy in turbulent shear flow,” J. Fluid Mech. 36, 177 (1969).

    Article  MATH  ADS  Google Scholar 

  3. J.W.S. Rayleigh, “On the dynamics of revolving flows,” Proc. R. Soc. London Ser. A 93, 148 (1916).

    Google Scholar 

  4. R.C. Kloosterziel, G.J.F. van Heijst, “An experimental study of unstable barotropic vortices in a rotating fluid,” J. Fluid Mech. 223, 1 (1991).

    Article  ADS  Google Scholar 

  5. I. Mutabazi, C. Normand, J.E. Wesfreid, “Gap size effects on centrifugally and rotationally driven instabilities,” Phys. Fluids A 4(6), 1199 (1992).

    Article  MATH  ADS  Google Scholar 

  6. B.J. Bayly, “Three-dimensional centrifugal-type instabilities in inviscid twodimensional flows,” Phys. Fluids 31(1), 56 (1988).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. O.J.E. Matsson, P.H. Alfredsson, “Curvature-and rotation-induced instabilities in channel flow,” J. Fluid Mech. 210, 537 (1990).

    Article  ADS  Google Scholar 

  8. A. Lifschitz, E. Hameiri, “Local stability conditions in fluid dynamics,” Phys. Fluids A 3(11), 2644 (1991).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. G.I. Taylor, A.E. Green, “Mechanism of the production of small eddies from large ones,” Proc. Roy. Soc. Lond. A 158, 499 (1937).

    Google Scholar 

  10. D. Sipp, L. Jacquin, “Elliptic instability in two-dimensional flattened Taylor-Green vortices,” Phys. Fluids 10(4), 839 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. D. Sipp, E. Lauga, L. Jacquin, “Rotating vortices: centrifugal, elliptic and hyperbolic-type instabilities,” Phys. Fluids 11(12), 3716 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. C. Cambon, J.-P. Benoit, L. Shao, L. Jacquin, “Stability analysis and large eddy simulation of rotating turbulence with organized eddies,” J. Fluid Mech. 278, 175 (1994).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. S. Leblanc, C. Cambon, “On the three-dimensional instabilities of 2D planar flows subjected to Coriolis force,” Phys. Fluids, 9 (5), 1307 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. D. Sipp, L. Jacquin, “Three-dimensional centrifugal-type instabilities of twodimensional flows in rotating systems”, Submitted to Phys. Fluids (1999).

    Google Scholar 

  15. J.T. Stuart, “On finite amplitude oscillations in laminar mixing layers,” J. Fluid Mech. 29, 417 (1967).

    Article  MATH  ADS  Google Scholar 

  16. C.M. Bender, S.A. Orszag, Advanced mathematical methods for scientists and engineers (McGraw-Hill, New-York, 1978).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelber

About this paper

Cite this paper

Sipp, D., Jacquin, L. (2000). A Criterion of Centrifugal Instabilities in Rotating Systems. In: Maurel, A., Petitjeans, P. (eds) Vortex Structure and Dynamics. Lecture Notes in Physics, vol 555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44535-8_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-44535-8_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67920-2

  • Online ISBN: 978-3-540-44535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics