Skip to main content

On the Stability of Vortices in an Ideal Gas

  • Conference paper
  • First Online:
Vortex Structure and Dynamics

Part of the book series: Lecture Notes in Physics ((LNP,volume 555))

  • 694 Accesses

Abstract

Two distinct mechanisms of three-dimensional instability in compressible planar vortices in an ideal gas are presented. Both mechanisms have been obtained with the geometrical optics (WKB) stability theory which consists in studying the evolution of short-wavelength disturbances localized along the trajectories of the vortex. The first one corresponds to parametric resonances arising when a vortex is periodically compressed; the resulting instabilities are localized in the core of the vortex. On the contrary, in the second case, which corresponds to the generalization to compressible flows of the Rayleigh stability criterion for centrifugal instability, the growing perturbation surrounds the vortex at a given radius. In the latter case, the structure of the corresponding discrete eigenmodes may be described exactly, thus complementing and improving the WKB theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Bayly: Phys. Rev. Lett. 57, 2160 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. B.J. Bayly: Phys. Fluids 31, 55 (1988)

    Article  ADS  Google Scholar 

  3. B.J. Bayly, D.D. Holm, A. Lifschitz: Phil. Trans. R. Soc. Lond. A 354, 895 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. C.M. Bender, S.A. Orszag: Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York 1978)

    MATH  Google Scholar 

  5. C. Cambon, C. Teissèdre, D. Jeandel: J. Méc. Théo. Appl. 4, 629 (1985)

    MATH  Google Scholar 

  6. A.D.D. Craik, H.R. Allen: J. Fluid Mech. 234, 613 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. S. Yu. Dobrokhotov, A.I. Shafarevich: Mat. Zametki 51, 72 (1992)

    MATH  MathSciNet  Google Scholar 

  8. P.G. Drazin, W.H. Reid: Hydrodynamic Stability (Cambridge University Press, Cambridge 1981).

    MATH  Google Scholar 

  9. K.S. Eckhoff: J. Diff. Eqns. 40, 94 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. K.S. Eckhoff: J. Fluid Mech. 145, 417 (1984)

    Article  MATH  ADS  Google Scholar 

  11. K.S. Eckho., S. Storesletten: J. Fluid Mech. 89, 401 (1978)

    Article  ADS  Google Scholar 

  12. K.S. Eckho., S. Storesletten: J. Fluid Mech. 99, 433 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  13. R.F. Gans: J. Fluid Mech. 68, 403 (1975)

    Article  MATH  ADS  Google Scholar 

  14. D.P. Lalas: J. Fluid Mech. 69, 65 (1975)

    Article  MATH  ADS  Google Scholar 

  15. S. Le Dizès, M. Rossi, H.K. Moffatt: Phys. Fluids 8, 2084 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. A. Le Duc, S. Leblanc: Phys. Fluids 11, 3563 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S. Leblanc: J. Fluid Mech. (submitted)

    Google Scholar 

  18. S. Leblanc, C. Cambon: Phys. Fluids 9, 1307 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. S. Leblanc, L. Le Penven: Phys. Fluids 11, 955 (1999)

    Article  ADS  MATH  Google Scholar 

  20. N. Lebovitz, A. Lifschitz: Proc. R. Soc. Lond. A 438, 265 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. S. Leibovich, K. Stewartson: J. Fluid Mech. 126, 335 (1983)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. A. Lifschitz: Phys. Lett. A 152, 199 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Lifschitz: Adv. Appl. Math. 15, 404 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Lifschitz, E. Hameiri: Phys. Fluids A 3, 2644 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. N.N. Mansour, T.S. Lundgren: Phys. Fluids A 2, 2089 (1990)

    Article  ADS  Google Scholar 

  26. V.P. Maslov: Théorie des Perturbations et Méthodes Asymptotiques (Dunod, Paris 1972)

    Google Scholar 

  27. P.G. Saffman: Vortex Dynamics (Cambridge University Press, Cambridge 1992)

    MATH  Google Scholar 

  28. D. Sipp, E. Lauga, L. Jacquin: Phys. Fluids 11, 3716 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. M.M. Vishik, S. Friedlander: J. Math. Pures Appl. 72, 145 (1993)

    MATH  MathSciNet  Google Scholar 

  30. F. Waleffe: Phys. Fluids A 2, 76 (1990)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  31. F.W. Warren: J. Fluid Mech. 68, 413 (1975)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-VerlagBerlin Heidelber

About this paper

Cite this paper

Leblanc, S., Duc, A.L., Penven, L.L. (2000). On the Stability of Vortices in an Ideal Gas. In: Maurel, A., Petitjeans, P. (eds) Vortex Structure and Dynamics. Lecture Notes in Physics, vol 555. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44535-8_12

Download citation

  • DOI: https://doi.org/10.1007/3-540-44535-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67920-2

  • Online ISBN: 978-3-540-44535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics