Skip to main content

Dynamics of Layers in Geophysical Flows

  • Conference paper
  • First Online:
Book cover Fluid Mechanics and the Environment: Dynamical Approaches

Part of the book series: Lecture Notes in Physics ((LNP,volume 566))

Abstract

The atmosphere and ocean structure consists of horizontal regions with characteristic mean flows, waves and turbulence, separated from each other by semipermanent thin layers such as the tropopause or the thermocline. At the same time, within these regions, thin layers are continually appearing and dissipating such as clouds and fronts, which largely determine the weather. There are also sharp variations in the horizontal structure of flow and physical processes separated by thin layers with sloping or vertical boundaries (e.g. ozone hole and the intertropical convergence zone). We review here how the mechanisms of waves, wave-mean flow interactions, turbulence distortion, turbulence-wave transformation and Coriolis forces, determine the formation, location and dynamics of these layers. This review provides perspectives on current methods of calculating these critical regions in large-scale numerical models used for weather and ocean forecasting, and for climate prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexopoulos, C.C., Keffer, J.F. Phys. of Fluids 14 (216) (1971)

    Article  ADS  Google Scholar 

  2. Ayotte, K.W., Sullivan, P.P., Andren, A., Doney, S.C., Holtslag, A.A.M., Large, W.G., McWilliams, J.C., Moeng, C.-H., Otte, M.J., Tribbia, J.J., Wyngaard, J.C. ‘An evaluation of neutral and convective planetary-boundary layer parameterizations relative to large eddy simulations’. Bound. Layer Meteor. 79, 131–175 (1996)

    Article  ADS  Google Scholar 

  3. Baht, G.S., Narasimha, R. ‘A volumetrically heated jet: large-eddy structure and entrainment characteristics’. J. Fluid Mech. 325, 303–330 (1996)

    Article  ADS  Google Scholar 

  4. Bisset, D.K., Hunt, J.C.R., Cai, X., Rogers, M.M. ‘Interfaces at the outer bondaries of turbulent motions’. Annual Research Briefs 1998, 125–135, Center for Turbulent Researsch, Stanford University (1998)

    Google Scholar 

  5. Babin, A., Mahalov, A., Nicolaenko, B. ‘On non-linear baroclinic waves and adjustment of pancake dynamics’. Theor. and Comp. Fluid Dyn. 11 (3/4), 215–235 (1998)

    Article  MATH  ADS  Google Scholar 

  6. Balmforth, N.J., Smith, S.G.L., Young, W.R. ‘Dynamics of interfaces and layers in a stratified turbulent fluid’. J. Fluid Mech. 355, 329–358 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Barenblatt, G.I., Bertsch, M., Dal Passo, R., Prostokishin, V.M., Ughi, M. ‘A math ematical model of turbulent heat and mass transfer in stably stratified shear flow’. J. Fluid Mech. 253, 341–358 (1993)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Booker, J.R., Bretherton, F.P. ‘The critical layer for internal gravity waves in a shear flow.’ J. Fluid Mech. 27, part 3, 513–539 (1967)

    Article  MATH  ADS  Google Scholar 

  9. Brost, R.A., Wyngaard, J.C. ‘A model study of the stably stratified planetary boundary layer’ J. Atmos. Sci. 35, 1427–1440 (1978)

    Article  ADS  Google Scholar 

  10. Carruthers, D.J., Hunt, J.C.R. ‘Velocity fluctuations near an interface between a turbulent region and a stably stratified layer’. j. Fluid Mech. 165, 475–501 (1986)

    Article  MATH  ADS  Google Scholar 

  11. Ching, C.Y., Fernando, H.J.S., Robles, A. ‘Breakdown of line plumes in turbulent environments.’ J. Geophys. Res. (Oceans) 100 (C3), 4707–4713 (1995)

    Article  ADS  Google Scholar 

  12. Craik, A.D.D., Leibovich, S. ‘A rational model for Langmuir circulations’. J. Fluid Mech. 73, 401–426 (1976)

    Article  MATH  ADS  Google Scholar 

  13. Csanady, G.T. ‘Turbulent interface layers’. J. Geophys. Res. 83, 2329–2342 (1978)

    Article  ADS  Google Scholar 

  14. Deardorff, J.W. ‘Convective velocity and temprature scales for the unstable plane tary boundary layer and for Rayleigh convection’ J. Atmos. Sci. 27 (8), 1211–1213 (1970)

    Article  ADS  Google Scholar 

  15. Dornbrack, A. ‘Turbulent mixing by breaking gravity waves’. J. Fluid Mech. 375, 113–141 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  16. Durbin, P.A., Hunt, J.C.R., Firth, D. ‘Mixing by a turbulent wake of a uniform temperature gradient in the approach flow’. Phys. of Fluids 25 (4), 588–591. (1982)

    Article  ADS  Google Scholar 

  17. Ekman, V.W. Ark. Math. Astr. och. Fys. 2 (11) (1905)

    Google Scholar 

  18. Fernando, H.J.S., Hunt, J.C.R. ‘Some aspects of turbulence and mixing in stably stratified layers’. Dynamics of Atmospheres and Oceans 23, 35–62. (1996)

    Article  ADS  Google Scholar 

  19. Fernando, H.J.S., Hunt, J.C.R. ‘Turbulence, waves and mixing at shear-free density interfaces. Part I-theoretical model’. J. Fluid Mech. 347, 197–234 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Fernando, H.J.S., Hunt, J.C.R., Strang, E.J., Berestov, A.L., Lozovatsky, I.D. ‘Tur bulent mixing in stably stratified flows: limitations and adaptations of the eddy diffusvity approach’. Physical Processes in Lakes and Oceans 54 351–362 (1998)

    Google Scholar 

  21. Galmiche, M., Thual, O., Bonneton, P. ‘Direct numerical simulation of turbulence in a stably stratified fluid and wave-shear interaction’. The Journal of Applied Scientific Research 59, 111–125 (1998)

    Article  MATH  Google Scholar 

  22. Galmiche, M. ‘Interaction turbulence-champs moyens et ondes de gravite internes dans un fluide stratifie’. PhD Dissertation, Institut National Polytechnique de Toulouse, France (1999)

    Google Scholar 

  23. Galmiche, M., Thual, O., Bonneton, P. ‘Wave/wave interaction producing hori zontal mean flows in stably stratified fluids’. Dynamics of Atmospheres and Oceans 31, 193–207 (2000)

    Article  ADS  Google Scholar 

  24. Galmiche, M., Thual, O., Bonneton, P. ‘Direct numerical simulation of turbulence mean field interactions in a stably-stratified fluid’. Submitted to the J. Fluid Mech. (2000)

    Google Scholar 

  25. Galmiche, M., Hunt, J.C.R. ‘The formation of shear and density layers in stably-stratified turbulent flows: linear processes.’ Submitted to the J. Fluid Mech. (2000)

    Google Scholar 

  26. Gargett, A.E. ‘Ocean turbulence’. Ann. Rev. Fluid. Mech. 21, 419–451 (1994)

    Article  ADS  Google Scholar 

  27. Gartshore, I.S., Durbin, P.A., Hunt, J.C.R. ‘The production of turbulent stress in a shear flow by irrotational fluctuations’ J. Fluid Mech. 137, 307–329 (1983)

    Article  ADS  Google Scholar 

  28. Gerz, T., Schumann, U., Elghobashi, S.E. ‘Direct numerical simulation of stratified homogeneous turbulent shear flows’. J. Fluid Mech. 200, 563–594 (1989)

    Article  MATH  ADS  Google Scholar 

  29. Gibson, C.L. ‘Fossil temperature, salinity and turbulence in the ocean’. Marine Turbulence, edited by J.C.J. Nihoul, 221–257 (1980)

    Google Scholar 

  30. Gill, A.E. ‘Atmosphere-Ocean Dynamics’. Academic Press, San Diego, CA (1982)

    Book  Google Scholar 

  31. Godeferd, F.S., Cambon, C. ‘Detailed investigation of the energy transfers in ho mogeneous stratified turbulence’. Phys. of Fluids 6 (6), 2084–2100 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Grosch, C.E., Salwen, H. ‘The continuous spectrum of the Orr-Sommerfeld equa tion, Part I-The spectrum and the eigen functions’. J. Fluid Mech. 68, 33 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hanazaki, H., Hunt, J.C.R. ‘Linear processes in unsteady stably stratified turbu lence.’ J. Fluid Mech. 318, 303–337 (1996)

    Article  MATH  ADS  Google Scholar 

  34. Holmes, P.J., Berkooz, G., Lumley, J.L. ‘Turbulence, coherent structures, symme try and dynamical systems’. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  35. Hoskins, B., Bretherton, F. ‘Atmospheric frontogenesis models: mathematical for mulation and solution’ J. Atmos. Sci 29, 11–37 (1972)

    Article  ADS  Google Scholar 

  36. Howard, L. ‘On the modification of clouds’, Essay to the Askesian Society, J. Taylor, London (1803)

    Google Scholar 

  37. Hunt, J.C.R., Kaimal J.C., Gaynor, J.E. ‘Some observations of turbulence structure in stable layers’. Q.J.R. Met. Soc. Ill, 793–815 (1985)

    Article  ADS  Google Scholar 

  38. Hunt, J.C.R., Shutts, G. J., Derbyshire, S.H. ‘Stably stratified flows in meteorology’. Dynamics of Atmospheres and Oceans 23, 63–79 (1996)

    Article  ADS  Google Scholar 

  39. Hunt, J.C.R. ‘Environmental forecasting and turbulence modeling’. Physica D 133, 270–295 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Hunt, J.C.R., Durbin, P.A. ‘Perturbed vortical layers and shear sheltering’. Fluid Dyn. Res. 24, 375–404 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. Hunt, J.C.R., Sandham, N., Vassilicos, J.C., Launder, B.E., Monkevitz, P.A., Hewitt, G.F. ‘Developments in turbulence research: review based on the 1999 Programme of the Isaac Newton Institute, Cambridge’. Under consideration for publication in the J. Fluid Mech. (2000)

    Google Scholar 

  42. Jones, W.L. ‘Propagation of internal gravity waves in fluids with shear flow and rotation’. J. Fluid Mech. 30 3, 439–448 (1967)

    Article  MATH  ADS  Google Scholar 

  43. Juckes, M.N., Mclntyre, M.E. ‘A high-resolution one-layer model of breaking plan etary waves in the stratosphere’. Nature 328 590–596 (1987)

    Article  ADS  Google Scholar 

  44. Kimura, Y., Herring, J.R. ‘Diffusion in stably stratified turbulence’. J. Fluid Mech. 328, 253–269 (1996)

    Article  MATH  ADS  Google Scholar 

  45. Kitchen, E.H., Mclntyre, M.E. ‘On whether inertio-gravity waves are absorbed or reflected when their intrinsic frequency is Doppler-shifted toward’. J. Meteor. Soc. of Japan. 58-2, 118–126 (1980)

    ADS  Google Scholar 

  46. Komori, S., Nagata, K. ‘Effects of molecular diffusivities on counter-gradient scalar and momentum transfer in strongly stable stratification’. J. Fluid Mech. 326, 205–237 (1996)

    Article  ADS  Google Scholar 

  47. Koop, C.G. ‘A preliminary investigation of the interaction of internal gravity waves with a steady shearing motion’. J. Fluid Mech. 113, 347–386 (1967)

    Article  ADS  Google Scholar 

  48. Kondo, H. ‘The thermally induced local wind and surface inversion over the Kanto plain on calm winter nights’ J. Appl. Meteor. 34 (6), 1439–1448 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  49. Large, W.G., McWillimas, J.C., Doney, S. ‘Oceanic vertical mixing: a review and a model with a non-local boundary layer parameterisation’. Rev. Geophys. 23, 363–403 (1994)

    Article  ADS  Google Scholar 

  50. Legras, B., Dritschel, D. ‘Vortex stripping and the generation of high vorticity gradients in two-dimensional flows.’ Appl. Sci. Rep. 51, 445–455 (1993)

    Article  MATH  Google Scholar 

  51. Lighthill, J. ‘Waves in Fluids’. Cambridge University Press (1978)

    Google Scholar 

  52. Linden, P.F. ‘Mixing in stratified fluids’. Geophys. Astrophys. Fluid Dynamics 13, 3–23 (1979)

    Article  ADS  Google Scholar 

  53. McGrath, J.L., Fernando, H.J.S., Hunt, J.C.R. ‘Turbulence, waves and mixing at shear-free density interfaces. Part II-laboratory experiments.’ J. Fluid Mech. 347, 235–261 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  54. Methven, J., Hoskins, B.J. ‘Spirals in potential vorticity. Part I: measures of structure’. J. Atmosph. Sci. 55, 2053–2066 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  55. Miyahara, S. ‘Wave absorption at critical levels in laterally bounded rotating fluids’. J. Meteor. Soc. Japan 54, 91–97 (1976)

    MathSciNet  Google Scholar 

  56. Mory, M.A. ‘A model of turbulent mixing acriss a density interface including the effect of rotation’. J. Fluid Mech. 223, 193–207 (1991)

    Article  MATH  ADS  Google Scholar 

  57. Nakamura, L., Kershaw, R., Gait, N. ‘Prediction of near-surface gusts generated by deep convection’. Meteor. Appl. 3, 157–167 (1996)

    Article  Google Scholar 

  58. Newley, T.M.J., Pearson, H.J., Hunt, J.C.R. ‘Stably stratified rotating flow through a group of obstacles’. Geophys. Astrophys. Fluid Dyn. 58, 147–171 (1991)

    Article  ADS  Google Scholar 

  59. Park, Y.-G., Whitehead, J.A., Gnanadeskian, A. ‘Turbulent mixing in stratified fluids: layer formation and energetics’. J. Fluid Mech. 279, 279–311 (1994)

    Article  ADS  Google Scholar 

  60. Pearson, H.J., Linden, P.F. ‘The final stage of decay of turbulence in stably strat ified fluid’. J. Fluid Mech. 134, 195–203 (1983)

    Article  MATH  ADS  Google Scholar 

  61. Perera, M.A.J.M., Fernando, H.J.S., Boyer, D.L. ‘Turbulent mixing at an inversion layer’. J. Fluid Mech. 267, 275–298 (1994)

    Article  ADS  Google Scholar 

  62. Phillips, O.M. ‘Turbulence in a strongly stratified fluid-is it unstable ?’ Deep-sea Res. 19, 79–81 (1972)

    Google Scholar 

  63. Posmentier, E.S. ‘The generation of salinity finestructure by vertical diffusion’. J. Phys. Ocean. 7, 298–300 (1977)

    Article  ADS  Google Scholar 

  64. Puttock, J.-S. ‘Turbulent diffusion’. Ph.D. dissertation, University of Cambridge (1976)

    Google Scholar 

  65. Riley, J.J., Metcalfe, R.W., Weissman, M.A. ‘Direct numerical simulations of ho mogeneous turbulence in density stratified fluids’. In Proc. AIP Conf. on Nonlinear Properties of Internal Waves (ed. Bruce J. West), Vol. 76, pp. 79–112 (1981)

    Google Scholar 

  66. Rottman, J.W., Britter, R.E. ‘The mixing efficiency and decay of grid-generated turbulence in stably-stratified fluids’. In Proc. of the Ninth Australian Fluid Me chanics Conference, University of Auckland, New Zealand, 8–12 Dec. 1986 (1986)

    Google Scholar 

  67. Souprayen, C., Vanneste, J., Hertzog, A., Haucgecorne, A. ‘Stochastic approach for the transport of action, energy and momentum of atmospheric gravity waves’. To be submitted to the J. Geophys. Res. (2000)

    Google Scholar 

  68. Strang, E.J., Fernando, H.J.S. Entrainment and mixing in stratified shear flows. Submitted to the J. Fluid Mech. (2000)

    Google Scholar 

  69. Sullivan, P.P., Moeng, C.H., Stevens, B.S., Lenschow, D.H., Mayor, S.D. ‘Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer.’ J. Atmos. Sci. 55, 3042–3064 (1998)

    Article  ADS  Google Scholar 

  70. Tennekes, H. ‘Eulerian and Lagrangian time microscales in isotropic turbulence’. J. Fluid Mech. 67, 561–567 (1975)

    Article  MATH  ADS  Google Scholar 

  71. Therry, G., Lacarrere, P. ‘Improving the eddy kinetic energy model for planetary boundary layer description.’ Bound. Layer Met. 25, 63–88 (1983)

    Article  ADS  Google Scholar 

  72. Townsend, A.A. ‘Internal waves produced by a convective layer’. J. Fluid Mech. 24 2, 307–319 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  73. Townsend, A. A. ‘Excitation of internal waves in a stably-stratified atmosphere with considerable wind-shear’. J. Fluid Mech. 32 1, 145–171 (1968)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  74. Townsend, A.A. ‘The Structure of Turbulent Shear Flow’. Cambridge University Press (1976)

    Google Scholar 

  75. Trefethen, L.N., Trefethen, A.E., Reddy, S.C, Driscoll, T.A. ‘Hydrodynamic sta bility without eigenvalues’. Sciences 261, 578–584 (1993)

    Article  MathSciNet  Google Scholar 

  76. Turner, J.S. ‘Buoyancy effects in Fluids’. Cambridge University Press (1973)

    Google Scholar 

  77. Turner, J.S. ‘Turbulent entrainment: the development of the entrainment assump tion, and its application to geophysical flows’. J. Fluid Mech. 173, 431–471 (1986)

    Article  ADS  Google Scholar 

  78. Warner, CD, Mclntyre, M.E. ‘An ultra-simple parametrization for non-orographic gravity waves’. Submitted to the J. Atm. Sciences (1999)

    Google Scholar 

  79. Whitham, G.B. ‘Linear and Nonlinear Waves’, ed. John Wiley and Sons, Inc. (1974)

    Google Scholar 

  80. Winters, K.B., D’Asaro, E.A. ‘Three-dimensional wave instability near a critical level’. J. Fluid Mech. 272, 255–284 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  81. Wu, X., Jacobs, R.G., Hunt, J.C.R., Durbin, P.A. ‘simulation of boundary layer transition induced by periodically passing wakes’. J. Fluid Mech. 398, 109–153 (1999)

    Article  MATH  ADS  Google Scholar 

  82. Yamanaka, M.D., Tanaka, H. ‘Propagation and breakdown of internal inertio-gravity waves near critical levels in the middle-atmosphere’. Journal of the Jap. Met Soc. 62, 1–16 (1984)

    Google Scholar 

  83. Yang, H. ‘Wave Packets and Their Bifurcations in Geophysical Fluid Dynamics.’ Springer-Verlag (1990)

    Google Scholar 

  84. Zehnder, J.A., Powell, D.M., Ropp, D.L. ‘The interaction of easterly waves, orogra phy, and the intertropical convergence zone in the genesis of eastern pacific tropical cyclones’. Monthly Weather Review 127 (7), 1566–1585 (1999)

    Article  ADS  Google Scholar 

  85. Zilitinkevich, S., Calanca, P. ‘An extended similarity theory for the stably stratified atmospheric surface layer’. Quart. J. Roy. Meteor. Soc (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hunt, J., Galmiche, M. (2001). Dynamics of Layers in Geophysical Flows. In: Lumley, J.L. (eds) Fluid Mechanics and the Environment: Dynamical Approaches. Lecture Notes in Physics, vol 566. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44512-9_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-44512-9_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41475-9

  • Online ISBN: 978-3-540-44512-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics