Skip to main content

Energy Loss and Aggregation Processes in Low Speed Collisions of Ice Particles Coated with Frosts or Methanol/Water Mixtures

  • Chapter
  • First Online:
Granular Gases

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

At low speeds, the energy loss in collisions and the adhesion (sticking) between particles depends strongly on the surface layer composition and morphology. In this paper we review our measurements of the coefficient of restitution in low speed collisions for a variety of surface coatings, for speeds in the range 0.01- 2 cm/s, and also the investigations of sticking forces (under both dynamic and static conditions), including the conditions for which sticking contacts have been observed. These results are compared with a few other similar measurements, and with theoretical models for energy loss in collisions. Specific applications to the dynamics of Saturn’s rings and to the formation of planetesimals in the early solar nebula, which motivated these studies, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cameron A. G. W. (1978) The primitive solar accretion disk and the formation of the planets. In The Origin of the Solar System (S. F. Dermott, Ed.) 49–75. J. Wiley & Sons, New York

    Google Scholar 

  2. Cameron A. G. W. (1978a) Physics of the primitive solar accretion disc. Moon and Planets 18 5–40

    Google Scholar 

  3. Sargent A. I., Beckwith S. (1987) Kinematics of the circumstellar gas of HL Tauri and R Monocerotis. Astrophys. J. 323 294–305

    Article  ADS  Google Scholar 

  4. Sargent A. I., Beckwith S. V. W. (1991) The molecular structure around HL Tauri. Astrophys. J. Lett. 382 31–35

    Article  ADS  Google Scholar 

  5. O’Dell C. R., Wen Z. (1994) Post-refurbishment mission Hubble Space Telescope images of the core of the Orion Nebula: Proplyds, Herbig-Haro objects, and measurements of a circumstellar disk. Astrophys. J. 436 194–202

    Article  ADS  Google Scholar 

  6. Marcy G. W., Butler R. P. (1996) A planetary companion to 70 Virginis. Astrophys. J. 464 L147–L151

    Article  ADS  Google Scholar 

  7. Mayor M., Queloz D. (1995) A Jupiter-mass companion to a solar-type star. Nature 378 355–359

    Article  ADS  Google Scholar 

  8. Lin D. N. C., Papaloizou J. (1985) On the dynamical origin of the solar system. In Protostars and Planets II (D. Black, M. Matthews, Ed.) 981–1072. U. of Arizona Press, Tucson

    Google Scholar 

  9. Lin D. N. C., Papaloizou J. (1993) Growth of planets from planetesimals. In Protostars and Planets III (E. Levy, J. Lunine, Ed.) 749–835. U. of Arizona Press, Tucson

    Google Scholar 

  10. Shu F. H., Johnstone D., Hollenbach D. (1993) Photoevaporation of the solar nebula and the formation of the giant planets. Icarus 106 92–101

    Article  ADS  Google Scholar 

  11. Weidenschilling S. J., Cuzzi J. N. (1993) Formation of planetesimals in the solar nebula. In Protostars and Planets III (E. H. Levy, J. I. Lunine, Ed.) 1031–1060. U. of Arizona Press, Tucson

    Google Scholar 

  12. Asphaug E., Benz W. (1994) Density of Comet Shoemaker-Levy deduced by modeling breakup of the parent rubble pile. Nature 370 120–124

    Article  ADS  Google Scholar 

  13. Asphaug E., Benz W. (1996) Size, density, and structure of comet Shoemaker-Levy 9 inferred from the physics of tidalbreakup. Icarus 121 225–248

    Article  ADS  Google Scholar 

  14. Sekanina Z. (1993) Disintegration phenomena expected during collision of Comet Shoemaker-Levy 9 with Jupiter. Science 262 382–387

    Article  ADS  Google Scholar 

  15. Sekanina Z., Chodas P. W., Yeomans D. K. (1994) Tidaldisruption and structure of periodic comet Shoemaker-Levy 9. Astron. Astrophys. 289 607–636

    ADS  Google Scholar 

  16. Sekanina Z., Yeomans D. K. (1985) Orbitalmotion, nucleus precession, and splitting of Periodic Comet Brooks 2. Astron. J. 90 2335–2352

    Article  ADS  Google Scholar 

  17. Würm G., Blum J. (1998) Experiments on preplanetary dust aggregation. Icarus 132 125–136

    Article  ADS  Google Scholar 

  18. Blum J., Münch M. (1993) Experimentalin vestigations on aggregate-aggregate collisions in the early solar nebula. Icarus 106 151–167

    Article  ADS  Google Scholar 

  19. Pinter S., Blum J., Grün E. (1989) Mechanicalprop erties of “fluffy” agglomerates consisting of core-mantle particles. In Proc. Intl. Workshop on the Physics and Mechanics of Cometary Materials (J. Hunt, T. D. Guyenne, Ed.) 215–219. ESA SP-302

    Google Scholar 

  20. Blum J. (1989) Coagulation of protoplanetary dust. Bull. Amer. Astr. Soc. 22 1082 (abstract)

    Google Scholar 

  21. Hatzes A. P., Bridges F., Lin D. N. C., Sachtjen S. (1991) Coagulation of particles in Saturn’s rings: Measurements of the cohesive force of water frost. Icarus 89 113–121

    Article  ADS  Google Scholar 

  22. Supulver K. D., Bridges F. G., Tiscareno S., Levoire J., Lin D. N. C. (1997) The sticking properties of water frost produced under various ambient conditions. Icarus 129 539–554

    Article  ADS  Google Scholar 

  23. Supulver K. D., Bridges F. G., Lin D. N. C. (1995) The coefficient of restitution of ice particles in glancing collisions: Experimental results for unfrosted surfaces. Icarus 113 188–199

    Article  ADS  Google Scholar 

  24. Hatzes A. P., Bridges F. G., Lin D. N. C. (1988) Collisional properties of ice spheres at low impact velocities. M. N. R. A. S. 231 1091–1115

    ADS  Google Scholar 

  25. Higa M., Arakawa M., Maeno N. (1996) Measurements of restitution coefficients of ice at low temperatures. Planet. Space Sci. 44 917–925

    Article  ADS  Google Scholar 

  26. Higa M., Arakawa M., Maeno N. (1998) Size dependence of restitution coefficients of ice in relation to collision strength. Icarus 133 310–320

    Article  ADS  Google Scholar 

  27. Dilley J., Crawford D. (1996) Mass dependence of energy loss in collisions of icy spheres: An experimentalstudy. J. Geophys. Res. 101 9267–9270

    Article  ADS  Google Scholar 

  28. Bridges F. G., Supulver K. D., Lin D. N. C., Knight R., Zafra M. (1996) Energy loss and sticking mechanisms in particle aggregation in planetesimal formation. Icarus 123 422–435

    Article  ADS  Google Scholar 

  29. Donev J. (1999) Low temperature methanolstic king measurements. Senior thesis, unpublished

    Google Scholar 

  30. Myer B. (1971) Spectroscopy. p. 203. American Elsevier Pub. Co., New York

    Google Scholar 

  31. Hertz H., Reine J. (1882) Angewandte Phys. 92 156

    Google Scholar 

  32. Goldreich P., Tremaine S. (1978) Icarus 34 227–239

    Article  ADS  Google Scholar 

  33. Andrew J. P. (1930) Phil. Mag. 9 593–610

    Google Scholar 

  34. Dilley J. P. (1993) Energy loss in collisions of icy spheres: Loss mechanisms and mass-size dependence. Icarus 105 225–234

    Article  ADS  Google Scholar 

  35. Hertzsch J. M., Spahn F., Brilliantov N. V. (1995) On low-velocity collisions of viscoelastic particles. J. de Physique II 5 1725–1738

    Article  ADS  Google Scholar 

  36. Brilliantov N. V., Spahn, F., Hertzsch J.-M., Pöschel, T. (1996) A model for collisions in granular gases. Phys. Rev. E 53 5382–5392

    Article  ADS  Google Scholar 

  37. Schwager T., Pöschel T. (1998) Coefficient of resitution of viscous particles and cooling rate of granular gases. Phys. Rev. E 57 650–654

    Article  ADS  Google Scholar 

  38. Ramirez R., Pöschel T., Brilliantov N. V., Schwager T. (1999) Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E 60 4465–4472

    Article  ADS  Google Scholar 

  39. Stewart G. R., Lin D. N. C., Bodenheimer P. H. (1984) In Planetary Rings (A. Brahic, R. Greenberg, Ed.) 447. U. of Arizona Press, Tucson.

    Google Scholar 

  40. Bridges F. G., Hatzes A. P., Lin D. N. C. (1984) Nature 309 333

    Google Scholar 

  41. Zebker H. A., Tyler G. L. (1984) Science 223 396

    Article  ADS  Google Scholar 

  42. Shu F. H., Dones L., Lissuaer J. J., Yuan C., Cuzzi J. N. (1985) Ap. J. 299 542

    Article  ADS  Google Scholar 

  43. Hämeen-Anttila, K. A. (1982) Moon Planets 26 171

    Article  MATH  ADS  Google Scholar 

  44. Araki S., Tremaine S. D. (1986) Icarus 65 83

    Article  ADS  Google Scholar 

  45. Araki S. (1991) Icarus 90 139

    Article  ADS  MathSciNet  Google Scholar 

  46. Wisdom J., Tremaine S. D. (1988) Icarus 95 925

    Google Scholar 

  47. Salo H. (1992) Nature 359 619

    Article  ADS  Google Scholar 

  48. Salo H. (1995) Icarus 117 287

    Article  ADS  Google Scholar 

  49. Richardson D. (1993) M. N. R. A. S. 261 396

    ADS  Google Scholar 

  50. Toomre A. (1990) In Dynamics and Interactions of Galaxies (R. Wielen, Ed) 292. Springer, Berlin.

    Google Scholar 

  51. Franklin F. A., Cook A. F., Barrey R. T. F., Roof C. A., Hunt G. E., De Rueta H. B. (1987) Icarus 69 280

    Article  ADS  Google Scholar 

  52. Dones L., Cuzzi J. N., Showalter M. R. (1993) Icarus 105 184

    Article  ADS  Google Scholar 

  53. Dones L. (1991) Icarus 92 194

    Article  ADS  Google Scholar 

  54. Cuzzi J. N., Estrada P. R. (1998) Icarus 132 1

    Google Scholar 

  55. Whittet D. C. B., Schutte W. A., Tielens A. G. G. M., Boogert A. C. A., De Graauw T., Ehrenfreund P., Gerakines P. A., Helmich F. P., Prusti T., Van Dishoeck E. F. (1996) Astr. Ap. 315 357

    ADS  Google Scholar 

  56. Showalter M. R., Nicholson P. D. (1990) Icarus 87 285

    Article  ADS  Google Scholar 

  57. Petit J.-M., Henon M. (1988) Astr. Ap. 199 343

    ADS  MATH  Google Scholar 

  58. Morfill G. E., Tscharnuter W., Volk H. J. (1985) In Protostars and Planets II (D. Black, M. Matthews, Ed.) 493. U. of Arizona Press, Tucson

    Google Scholar 

  59. Weidenschilling S. (1997) Icarus 127 290

    Article  ADS  Google Scholar 

  60. Kokubo E., Ida S. (1996) Icarus 123 180

    Article  ADS  Google Scholar 

  61. Safronov V. S. (1969) Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets. Nauka Press, Moscow. Also NASA-TT-F-677 (1972)

    Google Scholar 

  62. Wetherill G. W. (1980) Formation of the terrestrialpl anets. Ann. Rev. Astr. Ap. 18 77–113

    Article  ADS  Google Scholar 

  63. Petit J.-M., Henon M. (1987) Astr. Ap. 188 198

    MATH  ADS  Google Scholar 

  64. Aarseth S. J., Lin D. N. C., Palmer P. L. (1993) Evolution of planetesimals II: Numerical simulations. Ap. J. 403 351–376

    Article  ADS  Google Scholar 

  65. Noll K. S., McGrath M. A., Trafton L. M., Atreya S. K., Caldwell J. J., Weaver H. A., Yelle R. V., Barnet C., Edgington S. (1995) Science 267 1307

    Article  ADS  Google Scholar 

  66. Dubrulle B. (1993) Differential rotation as a source of angular momentum transfer in the solar nebula. Icarus 106 59–76

    Article  ADS  Google Scholar 

  67. Cuzzi J. N., Dobrovolskis A. R., Champney J. M. (1993) Particle-gas dynamics in the midplane of a protoplanetary nebula. Icarus 106 102–134

    Article  ADS  Google Scholar 

  68. Supulver K. D., Lin D. N. C. (1999) Formation of icy planetesimals in a turbulent solar nebula. Icarus submitted

    Google Scholar 

  69. Supulver K. D. (1997) Planetesimal formation in the outer solar nebula. Ph. D. dissertation, U. of Cal. Santa Cruz.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bridges, F., Supulver, K., Lin, D.N. (2001). Energy Loss and Aggregation Processes in Low Speed Collisions of Ice Particles Coated with Frosts or Methanol/Water Mixtures. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics