Skip to main content

Granular Gases: Probing the Boundaries of Hydrodynamics

  • Chapter
  • First Online:
Book cover Granular Gases

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the “continuum transition regime” (where shear rates and/or thermalgradien ts are very large). The following properties of granular gases support the above claim: (i) Mean free times are of the same order as macroscopic time scales. (ii) Mean free paths can be macroscopic and comparable to the system’s dimensions. (iii) Typical flows are supersonic. (iv) Shear rates are typically “large”. (v) Stress fields are scale (resolution) dependent. (vi) Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. M. Jaeger and S. R. Nagel, Granular Solids, Liquids and Gases, Rev. Mod. Phys. 68, 1259–1273 (1996).

    Article  ADS  Google Scholar 

  2. A. Einstein, Investigations on the Theory of the Brownian Movement, edited by R. Fürth, translated into English by A. D. Cowper, Dover (1956).

    Google Scholar 

  3. (i) M. A. Hopkins, M. Y. Louge, Inelastic Microstructure in Rapid Granular Flows of Smooth Disks, Phys. Fluids A 3(1), 47–57 (1991); (ii) I. Goldhirsch, G. Zanetti, Clustering Instability in Dissipative Gases, Phys. Rev. Lett. 70, 1619-1622 (1993); (iii) I. Goldhirsch, M. L. Tan and G. Zanetti, A Molecular Dynamical Study of Granular Fluids I: The Unforced Granular Gas in Two Dimensions, J. Sci. Comp. 8(1), 1-40 (1993); (iv) M. L. Tan, I. Goldhirsch, Intercluster Interactions in Rapid Granular Shear Flows, Phys. Fluids 9(4), 856-869 (1997); (v) I. Goldhirsch, M. L. Tan, The Single Particle Distribution Function for Rapid Granular Shear Flows of Smooth Inelastic Disks, Phys. Fluids 8(7), 1752-1763 (1996).

    Article  ADS  Google Scholar 

  4. (i) S. McNamara, W. R. Young, Inelastic Collapse and Clumping in a One-Dimensional Granular Medium, Phys. Fluids A4, 496–504 (1992); (ii) S. Mc-Namara, W. R. Young, Kinetics of a One-DimensionalGran ular Medium in the Quasielastic Limit, Phys. Fluids A5(1), 34-35 (1993); (iii) S. McNamara, W. R. Young, Inelastic Collapse in Two Dimensions. Phys. Rev. E 50, R28-R31 (1994).

    ADS  Google Scholar 

  5. L. P. Kadanoff, Built Upon Sand: Theoretical Ideas Inspired by Granular Flows. Rev, Mod. Phys. 71(1), 435–444 (1999).

    Article  ADS  Google Scholar 

  6. (i) J. T. Jenkins, M. W. Richman, Plane Simple Shear of Smooth Inelastic Circular Disks: the Anisotropy of the Second Moment in the Dilute and Dense Limits, J. Fluid. Mech. 192, 313–328 (1988); (ii) I. Goldhirsch, N. Sela, and S. H. Noskowicz, Kinetic Theoretical Study of a Simply Sheared Granular Gas-to Burnett Order, Phys. Fluids 8 (9), 2337-2353 (1996); (iii) I. Goldhirsch, N. Sela Origin of Normal Stress Differences in Rapid Granular Flows, Phys. Rev. E 54(4), 4458-4461 (1996); (iv) N. Sela, I. Goldhirsch, Hydrodynamic Equations for Rapid Flows of Smooth Inelastic Spheres-to Burnett Order, J. Fluid Mech. 361, 41-74 (1998), and refs. therein.

    Article  MATH  ADS  Google Scholar 

  7. (i) D. Burnett The Distribution of Molecular Velocities and the Mean Motion in a Nonuniform Gas, Proc. Lond. Math. Soc. 40, 382–435 (1935); (ii) Textbook on kinetic theory: M. K. Kogan, Rarefied Gas Dynamics, Plenum Press, New-York (1969); (iii) S. Chapman, T. G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge University Press, Cambridge (1970).

    Google Scholar 

  8. M. L. Tan, I. Goldhirsch, Rapid Granular Flows as Mesoscopic Systems, Phys Rev. Lett. 81(14), 3022–3025 (1998).

    Article  ADS  Google Scholar 

  9. B. J. Glasser, I. Goldhirsch, Scale Dependence, Correlations and Fluctuations of Stresses in Rapid Granular Flows, Unpublished (1999).

    Google Scholar 

  10. e.g.: (i) L. C. Woods, Transport Processes in Dilute Gases Over the Whole Range of Knudsen Numbers. Part I: General Theory, J. Fluid. Mech. 93, 585–607 (1979); (ii) K. Fiscko, D. Chapman, Comparison of Burnett, Super-Burnett and Monte-Carlo Solutions for Hypersonic Shock Structure, Prog. Aerounau. Astronaut. 118, 374-395 (1989).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. J. F. Lutsko, Molecular Chaos, Pair Correlations and Shear-Induced Ordering of Hard Spheres, Phys. Rev. Lett. 77, 2225–2228 (1996).

    Article  ADS  Google Scholar 

  12. P. B. Umbanhowar, F. Melo, H. L. Swinney, Localized Excitations in a Vertically Vibrated Layer, Nature 382, 793–796 (1996).

    Article  ADS  Google Scholar 

  13. P. K. Haff, Grain Flow as a Fluid Mechanical Phenomenon, J. Fluid Mech. 134, 401–948 (1983).

    Article  MATH  ADS  Google Scholar 

  14. (i) A. V. Bobylev, Exact Solutions of the Nonlinear Boltzmann Equation and the Theory of Maxwell Gas Relaxation, Theor. Math. Phys. 60(2) 280–310 (1984); (ii) A. N. Gorban, and I. V. Karlin, Transport Theory and Statistical Physics 21, 101-117 (1992). (iii) P. Rosenau, Extending Hydrodynamics via the Regularization of the Chapman-Enskog Expansion, Phys. Rev. A 40, 7193-7196 (1989); (iv) M. Slemrod, Renormalization of the Chapman-Enskog Expansion: Isothremal Fluid Flow and Rosenau Saturation, J. Stat. Phys. 91(1–2) 285-305 (1998).

    Article  MathSciNet  Google Scholar 

  15. M. H. Ernst, J. R. Dorfman, Nonanalytic Dispersion Relations for Classical Fluids, J. Stat. Phys. 12(4), 311–361 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  16. (i) I. Oppenheim, Nonlinear Response Theory, in “Correlation Functions and Quasiparticle Interactions in Condensed Matter”, ed. J. Woods Halley, Plenum Press, 235–258 (1978); (ii) H. Mori, Time-Correlation Functions in the Statistical Mechanics of Transport Processes, Phys. Rev. 111, 694-706 (1958); (iii) H. Mori, StatisticalMec hanicalTheory of Transport in Fluids, Phys. Rev. 112, 1829-1842 (1958).

    Google Scholar 

  17. I. Goldhirsch, T. P. C. van Noije, Green-Kubo Relations for Granular Fluids, Phys. Rev. E 61, 3241–3244 (1999).

    Article  ADS  Google Scholar 

  18. cf. e.g. (i) S. Harris, Introduction to the Theory of the Boltzmann Equation. Holt, Reinhart and Winston, N.Y. (1971); (ii) C. Cercignani, Theory and Application of the Boltzmann Equation, Scottish Acad. Press, Edinburgh and London (1975).

    Google Scholar 

  19. T. P. C. van Noije, M. H. Ernst, R. Brito, and J. A. G. Orza, Mesoscopic Theory of Granular Fluids, Phys. Rev. Lett. 79, 411–414 (1997).

    Article  ADS  Google Scholar 

  20. (i) A. I. Murdoch, On Effecting Averages and Changes of Scale via Weighting Functions, Arch. Mech. 50, 531–539 (1998); (ii) M. Babic, Average Balance Equations for Granular Materials, Int. J. of Eng. Sci. 35, 523-548 (1997).

    MATH  Google Scholar 

  21. S. B. Savage, Disorder, Diffusion and Structure Formation in Granular Flows, In: Disorder and Granular Media, D. Bideau and A. Hansen eds., Random Materials and Processes Ser., 255–285, North Holland (1993).

    Google Scholar 

  22. B. Miller, C. O’Hern, and R. P. Behringer, Stress Fluctuations for Continuously Sheared Granular Materials, Phys. Rev. Lett. 77, 3110–3113 (1996).

    Article  ADS  Google Scholar 

  23. (i) J. J. Brey, F. Moreno, and J. W. Dufty, Model Kinetic Equations for Low Density Granular Flow, Phys. Rev. E 54(1), 445–456 (1996); (ii) J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Hydrodynamics for Granular Flow at Low Density, Phys. Rev. E 58, 4638-4653 (1998).

    Google Scholar 

  24. (i) I. Kuscer, and M. M. R. Williams, Relaxation Constants of a Uniform Hard-Sphere Gas, Phys. Fluids. 10, 1922–1927 (1967); (ii) F. Schurrer, and G. Kugerl, The Relaxation of Single Hard Sphere Gases, Phys. Fluids. A 2, 609-618 (1990); (iii) S. E. Esipov, and T. Pöschel, The Granular Phase Diagram, J. Stat. Phys. 86, 1385-1395 (1997); (iv) J. J. Brey, D. Cubero, and M. J. Ruiz-Montero, High Energy Tail in the Velocity Distribution of a Granular Gas, Phys. Rev. E 59 1256-1258 (1999).

    Article  ADS  Google Scholar 

  25. (i) J. T. Jenkins, S. B. Savage, A Theory for Rapid Granular Flow of Identical, Smooth, Nearly Elastic, Spherical Particles, J. Fluid Mech. 130, 187–202 (1983); (ii) C. K. K. Lun, S. B. Savage, D. J. Jeffrey, and N. Chepurniy, Kinetic Theories of Granular Flow: Inelastic Particles in a Couette Flow and Slightly Inelastic Particles in a General Flow Field, J. Fluid Mech. 140 223-256 (1984); (iii) J. T. Jenkins, M. W. Richman, Grad∣s 13-Moment System for a Dense Gas of Inelastic Particles, Phys. Fluids 28, 3485-3494 (1985); (iv) C. K. K. Lun, and S. B. Savage, A Simple Kinetic Theory for Granular Flow of Rough Inelastic Spheres, J. Appl. Mech. 154, 47-53 (1987).

    Article  MATH  ADS  Google Scholar 

  26. J. T. Jenkins, and M. W. Richman, Plane Simple Shear of Smooth Inelastic Circular Disks: the Anisotropy of the Second Moment in the Dilute and Dense Limits, J. Fluid. Mech. 192, 313–328 (1988).

    Article  MATH  ADS  Google Scholar 

  27. C. K. K. Lun, Kinetic Theory for Granular Flow of Dense, Slightly Inelastic, Slightly Rough Spheres, J. Fluid Mech. 223, 539–559 (1991).

    Article  ADS  Google Scholar 

  28. E. J. Boyle, M. Massoudi, A Theory for Granular Materials Exhibiting Normal Stress Effects Based on Enskog’s Dense Gas Theory, Int. J. Engng. Sci. 28, 1261–1275 (1990).

    Article  MATH  Google Scholar 

  29. H. Grad, On the Kinetic Theory of Rarefied Gases, Comm. Pure and Appl. Math. 2, 331–407 (1949).

    Article  MATH  MathSciNet  Google Scholar 

  30. (i) O. R. Walton, R. L. Braun, Stress Calculations for Assemblies of Inelastic Spheres in Uniform Shear, Acta Mech. 63, 73–86 (1986); (ii) O. R. Walton, R. L. Braun, Viscosity and Temperature Calculations for Shearing Assemblies of Inelastic, Frictional Disks, J. Rheol. 30, 949-980 (1986).

    Article  Google Scholar 

  31. N. Sela, and I. Goldhirsch, Boundary Conditions for Granular and Molecular Gases, Unpublished (1999).

    Google Scholar 

  32. Some previous work on boundary conditions for granular gases: (i) J. T. Jenkins, and M. W. Richman, Boundary Conditions for Plane Flows of Smooth, Nearly Elastic, Circular Disks, J. Fluid Mech. 171, 53–69 (1986); (ii) M. W. Richman, Boundary Conditions Based Upon a Modified Maxwellian Velocity Distribution for Flows of Identical, Smooth, Nearly Elastic Spheres, Acta Mech. 75, 227-240 (1988); (iii) J. T. Jenkins, Boundary Conditions for Rapid Granular Flow: Flat, Frictional Walls, J. Appl. Mech. 114, 120-127 (1992); (iv) J. T. Jenkins, and E. Askari, Boundary Conditions for Rapid Granular Flows. J. Fluid Mech. 223, 497-508 (1991). (v) J. T. Jenkins, Boundary conditions for collisional grain flows at bumpy, frictional walls, (in this volume, page 125).

    Article  MATH  ADS  Google Scholar 

  33. C. L. Pekeris, Solution of the Boltzmann-Hilbert Integral Equation, Proc. N. A. S. 41 661–664 (1955).

    Google Scholar 

  34. M. Hopkins, and H. H. Shen, A Monte-Carlo Solution for Rapidly Shearing Granular Flows Based on the Kinetic Theory of Dense Gases, J. Fluid Mech. 244, 477–491 (1992).

    Article  MATH  ADS  Google Scholar 

  35. N. Sela, and I. Goldhirsch, Hydrodynamics of a One-Dimensional Granular Medium, Phys. Fluids 7(3), 507–525 (1995).

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldhirsch, I. (2001). Granular Gases: Probing the Boundaries of Hydrodynamics. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_4

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics