Skip to main content

Numerical Simulations of the Collisional Dynamics of Planetary Rings

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

Numerical simulations of planetary ring dynamics are reviewed, with main emphasis on local 3-dimensional simulations, which utilize a co-moving calculation cell with periodic boundary conditions. Various factors affecting the local balance between collisional dissipation and viscous gain of energy from the systematic velocity field are considered, including gravitational encounters and collective gravitational forces besides physical impacts. Simulation examples of the effects of particle size distribution, particles’ spin motion, and different forms of the coefficient of restitution are given. Viscous stability properties are also briefly discussed: examples of both instabilities and overstabilities are given. In this context 2D-simulations are useful, eventhough physically unrealistic even for extremely flattened planetary ring systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Araki, S. Tremaine. The dynamics of dense particle disks. Icarus 65 83–109 (1986).

    Article  ADS  Google Scholar 

  2. A. Brahic. Systems of colliding bodies in a gravitational field. Astron. Astropys. 54, 895–907 (1977).

    ADS  Google Scholar 

  3. F. G. Bridges, A. Hatzes, D. N. C. Lin. Structure, stability and evolution of Saturn’s rings. Nature 309, 333–335 (1984).

    Article  ADS  Google Scholar 

  4. N. V. Brilliantov, et al. Model for collisions in granular gases. Phys. Rev. E 53, 5382–5392 (1996).

    Article  ADS  Google Scholar 

  5. J. N. Cuzzi, et al. The vertical structure and thickness of Saturn’s rings. Icarus 38, 54–68 (1979).

    Article  ADS  Google Scholar 

  6. J. P. Dilley. Energy loss in collisions of icy spheres: Loss mechanism and sizemass dependence. Icarus 105, 225–234 (1993).

    Article  ADS  Google Scholar 

  7. L. Dones, J. N. Cuzzi, R. M. Showalter. Voyager photometry of Saturn’s A ring. Icarus 105, 184–215 (1993).

    Article  ADS  Google Scholar 

  8. P. Goldreich, and S. Tremaine. The velocity dispersion in Saturn’s rings. Icarus 34, 227–239 (1978).

    Article  ADS  Google Scholar 

  9. P. Goldreich, and S. Tremaine. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys. 20, 249–284 (1982).

    Article  ADS  Google Scholar 

  10. A. P. Hatzes, F. G. Bridges, and D. N. C. Lin. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. astr. Soc. 231, 1091–1115 (1988).

    ADS  Google Scholar 

  11. K. A. Hämeen-Anttila. An improved and generalized theory for the collisional evolution of Keplerian systems. Earth, Moon, and Planets 31, 271–299 (1978).

    Article  Google Scholar 

  12. K. A. Hämeen-Anttila, and J. Lukkari. Numerical simulations of collisions in Keplerian systems. Astrophys. Space Sci. 71, 475–497 (1980).

    ADS  Google Scholar 

  13. K. A. Hämeen-Anttila, and H. Salo. Generalized theory of impacts in particulate systems. Earth, Moon, and Planets 62, 47–84 (1993).

    Article  MATH  ADS  Google Scholar 

  14. W. H. Julian, and A. Toomre. Non-axisymmetric responses of differentially rotating disks of stars. Astrophys. J. 146, 810–827 (1966).

    Article  ADS  Google Scholar 

  15. D. N. C. Lin, and P. Bodenheimer. On the stability of Saturn’s rings. Astrophys. J. 248, L83–L86 (1981).

    Article  ADS  Google Scholar 

  16. J. Lukkari. Collisional amplification of density fluctuations in planetary rings. Nature, 292, 433–435 (1982).

    Article  ADS  Google Scholar 

  17. J. Lukkari, and H. Salo. Numerical Simulations of Collisions in Self-Gravitating Systems. Earth, Moon, and Planets 31, 1–13 (1984).

    Article  ADS  Google Scholar 

  18. E. A. Marouf et al. Particle size distribution in Saturn’s rings from Voyager I radio occultation Icarus 54, 189–211 (1983).

    Article  ADS  Google Scholar 

  19. K. Ohtsuki. Capture probability of colliding planetesimals: dynamical constraints on accretion of planets, satellites, and ring particles. Icarus 106, 228–246 (1993).

    Article  ADS  Google Scholar 

  20. D. C. Richardson. A new tree code method for simulation of planetesimal dynamics. Mon. Not. R. astr. Soc. 264, 396–414 (1993).

    ADS  Google Scholar 

  21. H. Salo. Collisional Evolution of Rotating, Non-Identical Particles. Earth, Moon, and Planets 38, 149–181 (1987).

    Article  MATH  ADS  Google Scholar 

  22. H. Salo. Numerical Simulations of Collisions between Rotating Particles. Icarus 70, 37–51 (1987).

    Article  ADS  Google Scholar 

  23. H. Salo. Numerical simulations of dense collisional systems. Icarus 90, 254–270. See also Erratum, Icarus 92, 367-368 (1991).

    Google Scholar 

  24. H. Salo. Numerical simulations of dense collisional systems II: Extended distribution of particle sizes. Icarus 96, 85–106 (1992).

    Article  ADS  Google Scholar 

  25. H. Salo. Gravitational wakes in Saturn’s rings. Nature 359, 619–621 (1992).

    Article  ADS  Google Scholar 

  26. H. Salo. The dynamics of dense planetary rings III: Self-gravitating identical particles. Icarus 117, 287–312 (1995).

    Article  ADS  Google Scholar 

  27. U. Schmit, and W. M. Tscharnuter. A fluid dynamical treatment of the common action of self-gravitation, collisions, and rotation in Saturn’s B-ring. Icarus 115, 304–319 (1995).

    Article  ADS  Google Scholar 

  28. U. Schmit, W. M. Tscharnuter. On the formation of the fine-scale structure in Saturn’s B-ring. Icarus 138, 173–187 (1999).

    Article  ADS  Google Scholar 

  29. F. Spahn, J.-M. Hertzsch, N. V. Brilliantov. The role of particle collisions for the dynamics in planetary rings. Chaos, Solitons and Fractals 5, 1945–1946 (1995).

    Article  ADS  Google Scholar 

  30. G. R. Stewart, D. N. C. Lin, and P. Bodenheimer. Collision induced transport properties in planetary rings. In Planetary Rings (Eds. R. Greenberg, A. Brahic) pp. 447–512. Univ. of Arizona Press, Tucson (1984).

    Google Scholar 

  31. K. D. Supulver, F. Bridges, D. N. C. Lin. The coefficient of restitution of ice particles in glancing collisions: experimental results for unfrosted surfaces. Icarus 113, 188–199 (1995).

    Article  ADS  Google Scholar 

  32. A. Toomre. On the gravitationalstabil ity of a disk of stars. Astrophys. J. 139, 1217–1238 (1964).

    Article  ADS  Google Scholar 

  33. A. Toomre. Gas-hungry Sc spirals. In Dynamics and interactions of Galaxies (Ed. R. Wielen), pp. 292–303. Springer, Berlin (1990).

    Google Scholar 

  34. J. Trulsen. Numerical simulation of jet streams I: The three-dimensional case. Astrophys. Space Sci. 17, 241–262 (1972).

    Article  ADS  Google Scholar 

  35. S. J. Weidenschilling et al. Ring particles: Collisional interactions and physical nature. In Planetary Rings, R. Greenberg, A. Brahic (Eds.) pp. 367–415. Univ. of Arizona Press, Tucson (1984).

    Google Scholar 

  36. W. Ward. On the radialstructure of Saturn’s rings. Geophys. Res. Lett. 8, 641–643 (1981).

    Article  ADS  Google Scholar 

  37. J. Wisdom, and S. Tremaine. Local simulations of planetary rings. Astron. J. 95, 925–940 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Salo, H. (2001). Numerical Simulations of the Collisional Dynamics of Planetary Rings. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_18

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics