Skip to main content

Dynamical Evolution of Viscous Discs. Astrophysical Applications to the Formation of Planetary Systems and to the Confinement of Planetary Rings and Arcs

  • Chapter
  • First Online:
Granular Gases

Part of the book series: Lecture Notes in Physics ((LNP,volume 564))

Abstract

Planetary rings belong to the most prominent examples of granular gases in astrophysical systems. They are subject of permanent scientific investigation since centuries. So far, however, neither the detailled mechanisms of formation of planetary rings nor their complex spatial and dynamic behavior, originating from inelastic particle collisions, resonances, gravitational perturbations and others, are completely understood. We give a review on the present state of knowledge about planetary ring dynamics and particularly focus on the discussion of unsolved theoretical problems and unexplained observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alder, B.J. and Wainwright, T.E. 1959. Studies in molecular dynamics. I: General method. J. Chem. Phys. 31, 459–466.

    Google Scholar 

  2. Barge, P. and Pellat, R. 1991. Mass spectrum and velocity dispersion during planetesimal accumulation: I. Accretion. Icarus 93, 270–287.

    Google Scholar 

  3. Barge, P. and Pellat, R. 1993. Mass spectrum and velocity dispersion during planetesimal accumulation: II. Fragmentation. Icarus 104, 79–96.

    Google Scholar 

  4. Boss, A. 1997. Giant planet formation by gravitational instability. Science 276, 1836–1839.

    Google Scholar 

  5. Black, D.C. and Matthews, M.S. eds 1985. Protostars and Planets II, Tucson: University of Arizona Press.

    Google Scholar 

  6. Borderies, N., Goldreich, P., and Tremaine, S. 1982. Sharp edges of planetary rings. Nature 299, 209–211.

    Google Scholar 

  7. Borderies, N., Goldreich, P., and Tremaine, S. 1983. Perturbed particle disks. Icarus 55,124–132.

    Google Scholar 

  8. Borderies, N., Goldreich, P., and Tremaine, S. 1985. A granular flow model for dense planetary rings. Icarus 63, 406–420.

    Google Scholar 

  9. Borderies, N., Goldreich, P., and Tremaine, S. 1989. The formation of sharp edges in planetary rings by nearby satellites. Icarus 80,344–360.

    Google Scholar 

  10. Brahic, A. 1975. A numerical study of a gravitating system of colliding particles: Applications to the dynamics of Saturn’s rings and to the formation of the solar system. Icarus 25, 452–457.

    Google Scholar 

  11. Brahic, A. 1976. Thèse d’Etat, Université Paris VII.

    Google Scholar 

  12. Brahic, A. 1976a. Numerical simulation of a system of colliding bodies in a gravitational field. J. Comp. Phys. 22, 171–188.

    Google Scholar 

  13. Brahic, A. 1977. Systems of Colliding Bodies in a Gravitational Field: I— Numerical Simulation of the Standard Model. Astron. Astrophys. 54, 895–907.

    Google Scholar 

  14. Brahic, A. 1982. The rings of Uranus. In: Uranus and the outer planets; Proceedings of the Sixtieth Colloquium, Bath, England, April 14–16, 1981. Cambridge University Press, p. 211–236.

    Google Scholar 

  15. Brahic, A., ed. 1984. Anneaux des planètes— Planetary rings, Cepadues, Toulouse.

    Google Scholar 

  16. Brahic, A. and Hénon, M. 1977. Systems of colliding bodies in a gravitational field: II— Effect of transversal viscosity. Astron. Astrophys. 59, 1–7.

    Google Scholar 

  17. Brahic, A. and Hubbard, W.H. 1989. The baffling ring arcs of Neptune. Sky and Telescope 77, 606–609.

    Google Scholar 

  18. Brahic, A. and Sicardy, B. 1981. Apparent thickness of Saturn’s rings. Nature 289, 447–450.

    Google Scholar 

  19. Brahic, A., Sicardy, B., Roques, F., Mc Laren, R., and Hubbard, W.B. 1986. Neptune’s arcs: Where and how many? Bull. Amer. Astron. Soc. 18, 778.

    Google Scholar 

  20. Camichel, H. 1958. Mesures photométriques de Saturne et de son anneau. Ann. d’Astrophys. 21, 231.

    Google Scholar 

  21. Charnoz, S., Th[ebault, P., and Brahic, A. to be published.

    Google Scholar 

  22. Colombo G., Goldreich, P., and Harris, A. 1976. Spiral structure as an explanation for the asymmetric brightness of Saturn’s A ring. Nature 264, 344–345.

    Google Scholar 

  23. Cuzzi, J.N., Burns, J.A., Durisen, R.H., and Hamill, P.M. 1979. The vertical structure and thickness of Saturn’s rings. Nature 281, 202–204.

    Google Scholar 

  24. Cuzzi, J.N., Durisen, R.H., Burns, J.A., Hamill, P. 1979a. The vertical structure and thickness of Saturn’s rings. Icarus 38, 54–68.

    Google Scholar 

  25. Cuzzi, J.N. and Scargle, J.D. 1985. Wavy edges suggest moonlet in Encke’s gap. Astrophys. J. 292, 276–290.

    Google Scholar 

  26. Cuzzi, J.N. and Burns, J. 1988. Charged particle depletion surrounding Saturn’s F ring: Evidence for a moonlet belt? Icarus 74, 284–324.

    Google Scholar 

  27. Descartes, R. 1644. Principia Philosophia. In Oeuvres de Descartes, eds C. Adams and P. Tannery, vol. VIII (Paris, 1905), p. 1–348.

    Google Scholar 

  28. Elliot, J.L., Dunham, E., and Mink, D. 1977. The rings of Uranus. Nature 267, 328–330.

    Google Scholar 

  29. Elliot, J.L., French, R.G., Frogel, J.A., Elias, J.H., Mink, D.J., and Liller, W. 1981. Orbits of nine Uranian rings. Astron. J. 86, 444–455.

    Google Scholar 

  30. Elliot, J.L. and Nicholson, P.D. 1984. The Rings of Uranus. in Planetary Rings, eds. R. Greenberg and A. Brahic (Tucson, Univ. of Arizona Press), 25–72.

    Google Scholar 

  31. Fernandez, J. A.; Ip, W.-H. 1984. Some dynamicalasp ects of the accretion of Uranus and Neptune— The exchange of orbitalangul ar momentum with planetesimals. Icarus 58, 109–120.

    Google Scholar 

  32. Ferrari, C. 1992. Thèse de l’Université Paris XI.

    Google Scholar 

  33. Ferrari, C. and Brahic, A. 1993. Azimuthalbrigh tness asymmetries in planetary rings. I: Neptune’s arcs and narrow rings. Icarus 111, 193–210.

    Google Scholar 

  34. Ferrari, C. and Brahic, A. 1993. Azimuthalbrigh tness variations in planetary rings: II— Arcs around Saturn and Uranus. Icarus, in press.

    Google Scholar 

  35. French, R.G., Elliot, J.L., and Levine, S.E. 1986. Structure of the Uranian rings. II. Ring orbits and widths. Icarus 67, 134–163.

    Google Scholar 

  36. Gehrels, T., ed. 1978. Protostars and Planets, University of Arizona Press, Tucson.

    Google Scholar 

  37. Goldreich, P. and Porco, C.C. 1987. Shepherding of the Uranian rings. II Dynamics. Astron. J. 93, 730.

    Google Scholar 

  38. Goldreich, P. and Tremaine, S. 1978. The velocity dispersion in Saturn’s rings. Icarus 34, 227–239.

    Google Scholar 

  39. Goldreich, P. and Tremaine, S. 1979. The excitation of density waves at the Lindblad and corotation resonances by an external potential. Astrophys. J. 233, 857–871.

    Google Scholar 

  40. Goldreich, P. and Tremaine, S. 1980. Disk-satellite interactions. Astrophys. J. 241, 425–441.

    Google Scholar 

  41. Goldreich, P. and Tremaine, S. 1981. The origin of the eccentricities of the rings of Uranus. Astrophys. J. 243, 1062–1075.

    Google Scholar 

  42. Goldreich, P. and Tremaine, S. 1982. The Dynamics of Planetary Rings. Ann. Rev. Astron. Astrophys. 20, 249–283.

    Google Scholar 

  43. Goldreich, P.; Tremaine, S.; Borderies, N. 1986. Towards a theory for Neptune’s arc rings. Astronomical Journal, 92, 490–494.

    Google Scholar 

  44. Goldreich, P. and Ward, W.R. 1973. The formation of planetesimals. Astrophys. J. 183, 1051–1062.

    Google Scholar 

  45. Greenberg, R., Hartmann, W.K., Chapman, C.R., and Wacker, J.F. 1978. Planetesimals to planets: Numerical simulation of collisional evolution. Icarus 35, 1–26.

    Google Scholar 

  46. Greenberg, R. and Brahic, A., eds 1984. Planetary Rings. Tucson: University of Arizona Press.

    Google Scholar 

  47. Greenzweig, Y. and Lissauer, J.J. 1990. Accretion Rates of Protoplanets. Icarus 87, 40–77.

    Google Scholar 

  48. Hänninen, J. and Salo, H. 1992. Collisional simulations of satellite Lindblad resonances. Icarus 97, 228–247.

    Google Scholar 

  49. Hayashi, C. 1981. Structure of the solar nebula, growth and decay of magnetic fields, and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53.

    Google Scholar 

  50. Hénon, M. 1981. A simple model of Saturn’s rings. Nature 293, 33–35.

    Google Scholar 

  51. Hénon, M. 1984. A simple model of Saturn’s rings— revisited. in Planetary Rings, A. Brahic ed., C.N.E.S., Cepadues, Toulouse, 363.

    Google Scholar 

  52. Heppenheimer, T. 1980. Secular resonances and the origin of the eccentricities of Mars and the asteroids. Icarus 41, 76–88.

    Google Scholar 

  53. Hubbard, W. B., Brahic, A., Bouchet, P., Elicer, L.-R., Haefner, R., Manfroid, J., Roques, F., Sicardy, B., and Vilas, F. 1985. Occultation Detection of a Neptune Ring Segment. Lunar and Planetary Science XVI, 368–369.

    Google Scholar 

  54. Hubbard, W. B., Brahic, A., Sicardy, B., Elicer, L.R., Roques, F., and Vilas, F. 1986. Occultation detection of a Neptunian ring-like arc. Nature 319, 636–640.

    Google Scholar 

  55. Hubbard, W. B., Vilas, F., Elicer, L.-R., Gehrels, T., Gehrels, J.-A., and Waterworth, M. 1984. Probable Ring of Neptune. IAU Circ. 1, 4022.

    Google Scholar 

  56. Ip, W. H. 1987. Gravitationalstirring of the asteroid belt by Jupiter zone bodies. Beiträge zur Geophysik 96, 44–51.

    Google Scholar 

  57. Jewitt, D.C. and Danielson, G.E. 1981. The Jovian Ring. J. Geophys. Res. 86, 8691–8697.

    Google Scholar 

  58. Kirkwood, D. 1872. On the formation and primitive structure of the solar system. Proc. Amer. Phil. Soc. 12, 163.

    Google Scholar 

  59. Kortenkamp, S. and Wetherill, G. 1997. Gas drag effects on planetesimals evolving under the influence of Jupiter and Saturn. Bull. of Am. Astr. Soc. 29, 28.06.

    Google Scholar 

  60. Lambert, J.H. 1761. Cosmologische Briefe über die Einrichtung des Weltbaues. Augsburg.

    Google Scholar 

  61. Lane, A.L., Hord, C.W., West, R.A.; Esposito, L.W., Coffeen, D.L., Sato, M., Simmons, K.E., Pomphrey, R.B., and Morris, R.B. 1982. Photopolarimetry from Voyager 2— Preliminary results on Saturn, Titan, and the rings. Science 215, 537–543.

    Google Scholar 

  62. Lane, A.L., Hord, C.W., West, R.A., Esposito, L.W., Simmons, K.E., Nelson, R.M., Wallis, B.D., Buratti, B.J., Horn, L.J., Graps, A.L., and Pryor, W.R. 1986. Photometry from Voyager 2— Initialresul ts from the Uranian atmosphere, satellites, and rings. Science 233, 65–70.

    Google Scholar 

  63. Kant, I. 1755. Allgemeine Naturgeschichte und Theorie des Himmels. Königberg and Leipzig.

    Google Scholar 

  64. Laplace, P.S. de 1787. Mémoire sur la Théorie de l’Anneau de Saturne. Mémoires de l’Académie Royale des Sciences de Paris. 249.

    Google Scholar 

  65. Lecar, M. and Aarseth, S. 1986. A numericalsim ulation of the formation of the terrestrialpl anets. Astrophys. J. 305, 564–579.

    Google Scholar 

  66. Lecar, M. and Franklin, F. 1997. The Solar Nebula, Secular Resonances, Gas Drag, and the Asteroid Belt. Icarus 129, 134–146.

    Google Scholar 

  67. Lecavelier des Etangs, A. 1998. Planetary migrations and sources of dust in the β Pictoris disk. Astron. Astrophys. 337, 501–511.

    Google Scholar 

  68. Levy, E.H. and Lunine, J.I. 1993 Protostars and Planets III, University of Arizona Press, Tucson.

    Google Scholar 

  69. Lin, D.N.C., Papaloizou, J.C.B., and Ruden, S.P. 1987. On the confinement of planetary arcs. Mon. Not. R. Astron. Soc. 227, 75–95.

    Google Scholar 

  70. Lin, D.N.C. and Papaloizou, J.C.B. 1979. Tidal torques on accretion discs in binary systems with extreme mass ratio. Mon. Not. R. Astron. Soc. 186, 799–812.

    Google Scholar 

  71. Lissauer, J. 1985. Shepherding modelfor Neptune’s arc ring. Nature 318, 544–545.

    Google Scholar 

  72. Lukkari, J. 1981; Collisional amplification of density fluctuations in Saturn’s rings. Nature 292, 433–435.

    Google Scholar 

  73. Lynden-Bell, D. and Pringle, J.E. 1974. The evolution of viscous discs and the origin of the nebular variables. Monthly Not. Roy. Astron. Soc. 168, 603–637.

    Google Scholar 

  74. Marouf, E.A. and Tyler, G.L. 1982. Microwave edge diffraction by features in Saturn’s rings— Observations with Voyager 1. Science 217, 243–245.

    Google Scholar 

  75. Marouf, E.A., Tyler, G.L., Zebker, H.A., Simpson, R.A., and Eshleman, V.R. 1983. Particle size distributions in Saturn’s rings from Voyager 1 radio occultation. Icarus 54, 189–211.

    Google Scholar 

  76. Marouf, E.A., Tyler, G.L., and Rosen, P.A. 1986. Profiling Saturn’s rings by radio occultation. Icarus 68, 120–166.

    Google Scholar 

  77. Marzari, F., Scholl, H., Tomascella, L., and Vanzani, V. (1997) Gas drag effects on planetesimals in the 2:1 resonance with proto-Jupiter. Planet. Space Sci. 45, 337–344.

    Article  ADS  Google Scholar 

  78. Mayor, M. and Quelloz, D. 1995. A Jupiter-mass companion to a Solar-type star. Nature 378, 355–359.

    Google Scholar 

  79. Marcy, G. and R. Buttler 1996. A planetary companion to 70 Virginis, Astrophys. J. 464, L.147–L.151.

    Google Scholar 

  80. Namouni, F., Luciani, J-F, and Pellat, R. 1996. The Formation of Planetary Cores: A Numerical Approach. Astron. & Astrophys. 307, 972–980.

    Google Scholar 

  81. Murray, C.D. and Thompson, R.P. 1990. Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature 348, 499–502.

    Google Scholar 

  82. Nicholson, P.D., Persson, S.E., Matthews, K., Goldreich, P., and Neugebauer, G. 1978. The Rings of Uranus: Result of the 10 April 1978 Occultation. Astron. J. 83, 1240–1248.

    Google Scholar 

  83. Petit, J.M. and Hénon, M. 1987. A numerical simulation of planetary rings-I-Binary encounters. Astron. Astrophys. 173, 389–404.

    Google Scholar 

  84. Petit, J.M. and Hénon, M. 1987. A numerical simulation of planetary rings-II-Monte Carlo model. Astron. Astrophys. 188, 198–205.

    Google Scholar 

  85. Petit, J.M. and Hénon, M. 1988. A numerical simulation of planetary rings-III-Mass segregation, ring confinement, and gap formation. Astron. Astrophys. 199, 343–356.

    Google Scholar 

  86. Pollack, J., Hubickyj, O., Bodenheimer, P., Lissauer, J., Podolack, M., and Greenzweig, Y. 1996. Formation of the giant planets by concurrent accretion of solids and gas. Icarus 124, 62–85.

    Google Scholar 

  87. Porco, C.C., Nicholson, P.D., Borderies, N., Danielson, G.E., Goldreich, P., Holberg, J.B., and Lane, A.L., 1984. The eccentric Saturnian ringlets at 1.29 R S and 1.45 R S . Icarus 60, 1–16.

    Google Scholar 

  88. Porco, C.C. 1991. An Explanation for Neptune’s Ring Arcs. Science 253, 995–1001.

    Google Scholar 

  89. Prendergast, K.H. and Burbidge, G.R. 1968. On the Nature of Some Galactic X-Ray Sources. Astrophys. J. Lett. 151, L 83.

    Google Scholar 

  90. Rosen, P.A. and Lissauer, J.J. 1988. The Titan-1:0 nodalb ending wave in Saturn’s ring C. Science 241, 690–694.

    Google Scholar 

  91. Safronov, V.S. 1969. Evolution of the protoplanetary cloud and formation of the Earth and the planets. Moscow, Nauka Press.

    Google Scholar 

  92. Safronov, V. S. 1972. Ejection of bodies from the solar system in the course of the accumulation of the giant planets and the formation of the cometary cloud. The Motion, Evolution of Orbits, and Origin of Comets; Proceedings from IAU Symposium no. 45, held in Leningrad, U.S.S.R., August 4–11, 1970. In: G.A. Chebotarev, E.I. Kazimirchak-Polonskaia, and B.G. Marsden (Eds.) InternationalAstronomicalUnion. Symposium no. 45, Dordrecht, Reidel, p.329.

    Google Scholar 

  93. Salo, H. 1985. Numerical simulations of collisions and gravitational encounters in systems of non-identical particles. Earth, Moon, and Planets 33, 189–200.

    Google Scholar 

  94. Salo, H. and Lukkari, J. 1984. Numerical simulations of collisions and gravitational encounters in systems of non-identical particles. Earth, Moon, and Planets 30, 229–243.

    Google Scholar 

  95. Salo, H., Lukkari, J., and Hanninen, J. 1988. Velocity dependent coefficient of restitution and the evolution of collisional systems. Earth, Moon, and Planets 43, 33–43.

    Google Scholar 

  96. Showalter, M.R, Burns, J.A., Cuzzi, J.N., and Pollack, J.B. 1985. Discovery of Jupiter’s “gossamer” ring. Nature 316, 526–528.

    Google Scholar 

  97. Showalter, M.R., Cuzzi, J.N., Marouf, E.A., Esposito, L.W. 1986. Satellite “wakes” and the orbit of the Encke Gap moonlet. Icarus 66, 297–323.

    Google Scholar 

  98. Showalter, M.R., Burns, J.A., Cuzzi, J.N., and Pollack, J.B. 1987. Jupiter’s ring system: New results on strcuture and particle properties. Icarus 69, 458–498.

    Google Scholar 

  99. Sicardy, B. 1988. Etude observationnelle, analytique et numérique des environnements planétaires. Thèse d’Etat.

    Google Scholar 

  100. Sicardy, B. 1991. Numerical Exploration of Planetary Arc Dynamics. Icarus 89, 197–219.

    Google Scholar 

  101. Sicardy, B and Brahic, A. 1990. The new rings— Contributions of recent ground-based and space observations to our knowledge of planetary rings. Advances in Space Research 10, 211–219.

    Google Scholar 

  102. Sicardy, B., Roques, F., and Brahic, A. 1991. Neptune’s rings, 1983-1989: Ground-based stellar occultation observations. I-Ring-like arc detections. Icarus 89, 220–243.

    Google Scholar 

  103. Smith, B.A., Soderblom, L.A., Beebe, R. F., Boyce, J.M., Briggs, G., Bunker, A., Collins, S.A., Hansen, C., Johnson, T.V., Mitchell, J.L., Terrile, R.J., Carr, M.H., Cook, A.F., Cuzzi, J.N., Pollack, J.B., Danielson, G.E., Ingersoll, A.P.; Davies, M.E., Hunt, G.E., Masursky, H., Shoemaker, E.M., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V.E. 1981. Encounter with Saturn— Voyager 1 imaging science results. Science 212, 163–191.

    Google Scholar 

  104. Smith, B.A., Soderblom, L.A., Batson, R., Bridges, P., Inge, J., Masursky, H, Shoemaker, E., Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S.A., Hansen, C.J., Johnson, T.V., Mitchell, J.L., Terrile, R.J., Cook, A.F.; Cuzzi, J., Pollack, J.B., Danielson, G.E., Ingersoll, A., Davies, M.E., Hunt, G.E., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, R., and Suomi, V.E. 1982. A new look at the Saturn system: The Voyager 2 images. Science 215, 505–537.

    Google Scholar 

  105. Smith, B.A., Soderblom, L.A., B.A. Smith, L.A. Soderblom, R. Beebe, D. Bliss, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, S.A. Collins, A.F. Cook II, S.K. Croft, J.N. Cuzzi, G.E. Danielson, M.E. Davies, T.E. Dowling, D. Godfrey, C.J. Hansen, C. Harris, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, R.J. Krauss, H. Masursky, D. Morrison, T. Owen, J.B. Plescia, J.B. Pollack, C.C. Porco, K. Rages, C. Sagan, E.M. Shoemaker, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synnott, R.J. Terrile, P. Thomas, W.R. Thomson, and Veverka, J. 1986. Voyager 2 in the Uranian system:imaging science results. Science 233, 43–64.

    Google Scholar 

  106. Smith, B.A., Soderblom, L.A., D. Banfield, C. Barnet, A.T. Basilevsky, R. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook II, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. De Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. Mac Ewen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synnott, R.J. Terrile, P. Thomas, W.R. Thomson, A. Verbiscer, and J. Veverka 1989. Voyager 2 at Neptune: Imaging Science results. Science 246, 1422–1449.

    Google Scholar 

  107. Spitzer, L. 1939. The dissipation of planetary filaments. Astrophys. J. 90, 675.

    Google Scholar 

  108. Svitek, T. and Danielson, G.E. 1987. Azimuthal brightness variation and albedo measurements of the Uranian rings. J. Geophys. Res. 92, 14979–14986.

    Google Scholar 

  109. Thébault, P. 1997. Les processus d’accrétion dans un disque de planétésimaux perturbé par un proto-Jupiter. Thèse de doctorat.

    Google Scholar 

  110. Thébault, P. and Brahic, A., 1999. Dynamical influence of a Proto-Jupiter on a disc of colliding planetesimals. Planet. Space Sci. 47, 233–243.

    Google Scholar 

  111. Toomre, A. 1964. On the gravitationalstabil ity of a disk of stars. Astrophys. J. 139, 1217–1238.

    Google Scholar 

  112. Trilling, D.E., Benz, W., Guillot, T., Lunine, J.I., Hubbard, W.B., and Burrows, A. 1998. Orbital Evolution and Migration of Giant Planets: Modeling Extrasolar Planets. Astrophys. J. 500, 428–439.

    Google Scholar 

  113. Trulsen, J. 1972. On the rings of Saturn. Astrophys. Space Sci. 17, 330.

    Google Scholar 

  114. Ward, W.R. 1981. Solar nebula dispersal and the stability of the planetary system I. Scanning secular resonance theory. Icarus 47, 234–264.

    Google Scholar 

  115. Ward, W.R. 1997. Survivalof Planetary Systems. Astrophys. J. 482, L211–214.

    Google Scholar 

  116. Weidenschilling, S. 1975. Mass loss from the region of Mars and the asteroid belt. Icarus 26, 361–3666.

    Google Scholar 

  117. Weidenschilling, S.J., Chapman, C.R., Davis, D.R., and Greenberg, R. 1984. Ring particles— Collisional interactions and physical nature. in Planetary Rings, eds. R. Greenberg and A. Brahic (Tucson, Univ. of Arizona Press), 367–415.

    Google Scholar 

  118. Weidenschilling, S. and Davis, R. 1985. Orbital resonances in the solar nebula: implications for planetary accretion. Icarus 62, 16–29.

    Google Scholar 

  119. Weidenschilling, S., Spaute, D., Davis, R., Marzari, F., and Ohtsuki, K. 1997. Accretional evolution of a planetesimal swarm: 2. the terrestrial zone. Icarus 128, 429–455.

    Google Scholar 

  120. Wetherill, G.W. 1980. Formation of the terrestrial planets. Ann. Rev. Astron. Astrophys. 18, 77–113.

    Google Scholar 

  121. Wetherill, G. 1989. Origin of the asteroid belt. In Asteroids II, eds R. P. Binzel, T. Gehrels and M. S. Matthews, p. 661–680. University of Arizona Press, Tucson.

    Google Scholar 

  122. Wetherill, G.W. 1992. An alternative model for the formation of the asteroids. Icarus 100, 307–325.

    Google Scholar 

  123. Wetherill, G. and Stewart, G. 1989. Accumulation of a swarm of planetesimals. Icarus 77, 330–357.

    Google Scholar 

  124. Wetherill, G. and Stewart, G. 1993. Formation of planetary embryos: Effects of fragmentation, low relative velocity, and independent variation of eccentricity and inclination. Icarus 106, 190–209.

    Google Scholar 

  125. Zebker, H.A., Marouf, E.A., and Tyler, G.L. 1985. Saturn’s rings: Particle size distributions for thin layer model. Icarus 64, 531–548.

    Google Scholar 

  126. Zebker, H.A. and Tyler, G.L. 1984. Thickness of Saturn’s rings inferred from Voyager 1 observations of microwave scatter. Science 223, 396–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brahic, A. (2001). Dynamical Evolution of Viscous Discs. Astrophysical Applications to the Formation of Planetary Systems and to the Confinement of Planetary Rings and Arcs. In: Pöschel, T., Luding, S. (eds) Granular Gases. Lecture Notes in Physics, vol 564. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44506-4_17

Download citation

  • DOI: https://doi.org/10.1007/3-540-44506-4_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41458-2

  • Online ISBN: 978-3-540-44506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics