Skip to main content

Semantic Reasoning based Video Database Systems

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1873))

Included in the following conference series:

Abstract

A constraint of existing content-based video data models is that each modeled semantic description must be associated with time intervals exactly within which it happens and semantics not related to any time interval are not considered. Consequently, users are provided with limited query capabilities. This paper is aimed at developing a novel model with two innovations: (1) Semantic contents not having related time information can be modeled as ones that do; (2) Not only the temporal feature of semantic descriptions, but also the temporal relationships among themselves are components of the model. The query system is by means of reasoning on those relationships.

To support users’ access, a video algebra and a video calculus as formal query languages, which are based on semantic relationship reasoning, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Adali, K. S. Candan, S.-S. Chen, K. Erol, and V. S. Subrahmanian. Advanced video information system: Data structures and query processing. AGM-Springer Multimedia Systems Journal, 1996.

    Google Scholar 

  2. J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the ACM, Springer-Verlag, 26(11), 1983.

    Google Scholar 

  3. E. Ardizzone and M. L. Cascia. Automatic video database indexing and retrieval. Multimedia Tools and Applications, 4(1), 1997.

    Google Scholar 

  4. S.-F. Chang, W. Chen, H. Meng, H. Sundaram, and D. Zhong. Videoq: An automatedn content based video search system using visual cues. In ACM Multimedia, November 1997.

    Google Scholar 

  5. T.-S. Chua and L.-Q. Ruan. A video retrieval and sequencing system. ACM Transactions on Information Systems, 13(4), 1995.

    Google Scholar 

  6. Y. Day, S. Dagtag, M. Iino, A. Khoakhar, and A. Ghafoor. A multi-level abstraction and modeling in video databases. ACM Springer-Verlag Multimedia Systems, 7(5), 1999.

    Google Scholar 

  7. C. Decleir and M.-S. Hacid. A database approach for modeling and querying video data. In IEEE Data Engineering, Australia, 1999.

    Google Scholar 

  8. A. Hampapur, R. Jain, and T. Weymouth. Production model based digital video segmentation. Journal of Multimedia Tools and Applications, 1(1), 1995.

    Google Scholar 

  9. H. Jiang, D. Montesi, and K. Elmagarmid. Videotext database systems. In IEEE Int’l Conf. on Multimedia Computing and Systems, Ontario, Canada, June 1997.

    Google Scholar 

  10. J. Oh and K. A. Hua. An efficient and cost-effective technique for browsing, querying and indexing large video databases. In ACM SIGMOD, Dallas, TX, May 2000.

    Google Scholar 

  11. J. Oh, K. A. Hua, and N. Liang. A content-based scene change detection and classification technique using background tracking. In SPIE Conf. on Multimedia Computing and Networking, San Jose, CA, January 2000.

    Google Scholar 

  12. E. Oomoto and K. Tanaka. Ovid: Design and implementation of a video-object database system. IEEE Trans. on Knowledge and Data Engineering, 5, August 1993.

    Google Scholar 

  13. Y. Rui, S. Huang, and S. Mehrotra. Constructing table-of-content for videos. ACM Springer-Verlag Multimedia Systems, 7(5), 1999.

    Google Scholar 

  14. T. G. A. Smith and G. Davenport. The stratification system: A design environment for random access video. In Proceedings of the 3rd Int’l Workshop on Network and Operating System Support for Digital Audio and Video, La Jolla, CA, 1992.

    Google Scholar 

  15. D. Swanberg, C.-F. Shu, and R. Jain. Knowledge guided parsing in video databases. In SPIE Conf. on Image and Video Processing, volume 1908, San Jose, CA, February 1993.

    Google Scholar 

  16. R. Weiss, A. Duda, and D. Gifford. Content-based access to algebraic video. In IEEE Int’l Conf. on Multimedia Computing and Systems, Boston, USA, 1994.

    Google Scholar 

  17. A. Yoshitaka, Y. Hosoda, M. Yoshimisu, M. Hirakawa, and T. Ichikawa. Violone: Video retrieval by motion example. Visual Languages and Computing, 7, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tran, D.A., Hua, K.A., Vu, K. (2000). Semantic Reasoning based Video Database Systems. In: Ibrahim, M., KĂĽng, J., Revell, N. (eds) Database and Expert Systems Applications. DEXA 2000. Lecture Notes in Computer Science, vol 1873. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44469-6_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-44469-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-67978-3

  • Online ISBN: 978-3-540-44469-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics