Skip to main content

A Signcryption Scheme Based on Integer Factorization

  • Conference paper
  • First Online:
Information Security (ISW 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1975))

Included in the following conference series:

Abstract

Signcryption is a public-key cryptographic primitive introduced by Zheng, which achieves both message confidentiality and nonrepudiatable origin authenticity, at a lower computational and communication overhead cost than the conventional ‘sign-then-encrypt’ approach. We propose a new signcryption scheme which gives a partial solution to an open problem posed by Zheng, namely to find a signcryption scheme based on the integer factorization problem. In particular, we prove that our scheme is existentially unforgeable, in the random oracle model, subject to the assumption that factoring an RSA modulus N = pq (with p and q prime) is hard even when given the additional pair (g; S), where gℤ* N is an asymmetric basis of large order less than a bound S/2 ≪ √N.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bellare, A. Boldyreva, and S. Micali. Public-Key Encryption in a Multi-user Setting: Security Proofs and Improvements. In EUROCRYPT 2000, volume 1807 of LNCS, pages 259–274, Berlin, 2000. Springer-Verlag.

    Chapter  Google Scholar 

  2. D. Boneh and M. Franklin. Efficient Generation of Shared RSA Keys. In CRYPTO’97, volume 1294 of LNCS, pages 425–439, Berlin, 1997. Springer-Verlag.

    Google Scholar 

  3. S. Cavallar et al. Factorization of a 512-Bit RSA Modulus. In EUROCRYPT 2000, volume 1807 of LNCS, pages 1–18, Berlin, 2000. Springer-Verlag.

    Chapter  Google Scholar 

  4. U. Feige and A. Shamir. Witness Indistinguishable and Witness Hiding Protocols. In Proc. 22-nd STOC, pages 416–426. ACM, 1990.

    Google Scholar 

  5. FIPS 186-2, Digital Signature Standard. Federal Information Processing Standards Publication 186-2, 2000. Available from http://csrc.nist.gov/.

  6. M. Girault. Self-Certified Public Keys. In EUROCRYPT’ 91, volume 547 of LNCS, pages 490–497, Berlin, 1992. Springer-Verlag.

    Google Scholar 

  7. S. Goldwasser, S. Micali, and R. Rivest. A Digital Signature Scheme Secure against Adaptively Chosen Message Attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. Lenstra and E. Verheul. Selecting Cryptographic Key Sizes. In PKC2000, volume 1751 of LNCS, pages 446–465, Berlin, 2000. Springer-Verlag.

    Google Scholar 

  9. D. Pointcheval. The Composite Discrete Logarithm and Secure Authentication. In PKC2000, volume 1751 of LNCS, pages 113–128, Berlin, 2000. Springer-Verlag.

    Google Scholar 

  10. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind Signatures. J. of Cryptology, 1999. Available from http://www.di.ens.fr/∼pointche.

  11. G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authentication and Signature Generation. In EUROCRYPT’98, volume 1403 of LNCS, pages 422–436, Berlin, 1998. Springer-Verlag.

    Google Scholar 

  12. G. Poupard and J. Stern. Short Proofs of Knowledge for Factoring. In PKC 2000, volume 1751 of LNCS, pages 147–166, Berlin, 2000. Springer-Verlag.

    Google Scholar 

  13. C. P. Schnorr. Effficient Identification and Signatures for Smart Cards. In CRYPTO’89, volume 435 of LNCS, pages 239–251, Berlin, 1990. Springer-Verlag.

    Google Scholar 

  14. SEC2. Recommended Elliptic Curve Domain Parameters, September 2000. Standards for Efficient Cryptography Group. Available from http://www.secg.org/.

  15. Y. Zheng. Digital Signcryption or How to Achieve Cost(Signature & Encryption) ‘<‘< Cost(Signature) + Cost(Encryption). In CRYPTO’97, volume 1294 of LNCS, pages 165–179, Berlin, 1997. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steinfeld, R., Zheng, Y. (2000). A Signcryption Scheme Based on Integer Factorization. In: Goos, G., Hartmanis, J., van Leeuwen, J., Pieprzyk, J., Seberry, J., Okamoto, E. (eds) Information Security. ISW 2000. Lecture Notes in Computer Science, vol 1975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44456-4_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-44456-4_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41416-2

  • Online ISBN: 978-3-540-44456-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics