Skip to main content

Irregularities of Distribution, Derandomization, and Complexity Theory

  • Conference paper
  • First Online:
FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2000)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1974))

  • 543 Accesses

Abstract

In 1935, van der Corput asked the following question: Given an infinite sequence of reals in [0, 1], define

$$ D(n) = \mathop {\sup }\limits_{o \leqslant x \leqslant 1} \left| {|S_n \cap [0,x]| - nx} \right|,$$

where Sn consists of the first n elements in the sequence. Is it possible for D(n) to stay in O(1)? Many years later, Schmidt proved that D(n) can never be in o(log n). In other words, there are limitations on how well the discrete distribution, x → ∣S n ∩ [0, x] |, can simulate the continuous one, x → nx. The study of this intriguing phenomenon and its numerous variants related to the irregularities of distributions has given rise to discrepancy theory. The relevance of the subject to complexity theory is most evident in the study of probabilistic algorithms. Suppose that we feed a probabilistic algorithm not with a perfectly random sequence of bits (as is usually required) but one that is only pseudorandom or even deterministic. Should performance necessarily suffer? In particular, suppose that one could trade an exponential-size probability space for one of polynomial size without letting the algorithm realize the change. This form of derandomization can be expressed by saying that a very large distribution can be simulated by a small one for the purpose of the algorithm. Put differently, there exists a measure with respect to which the two distributions have low discrepancy. The study of discrepancy theory predates complexity theory and a wealth of mathematical techniques can be brought to bear to prove nontrivial derandomization results. The pipeline of ideas that flows from discrepancy theory to complexity theory constitutes the discrepancy method. We give a few examples in this survey. A more thorough treatment is given in our book [15]. We also briefly discuss the relevance of the discrepancy method to complexity lower bounds.

Proceedings of FSTTCS-2000. This workw as supported in part by NSF Grant CCR- 96-23768, ARO Grant DAAH04-96-1-0181, and NEC Research Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K. Partitioning arrangements of lines II: Applications, Disc. Comput. Geom. 5 (1990), 533–573.

    Article  MATH  Google Scholar 

  2. Agarwal, P.K. Geometric partitioning and its applications, in Computational Geometry: Papers from the DIMACS Special Year, eds., Goodman, J.E., Pollack, R., Steiger, W., Amer. Math. Soc., 1991.

    Google Scholar 

  3. Agarwal, P.K., Erickson, J. Geometric range searching and its relatives, in Advances in Discrete and Computational Geometry, eds. Chazelle, B., Goodman, J.E., Pollack, R., Contemporary Mathematics 223, Amer. Math. Soc., 1999, pp. 1–56.

    Google Scholar 

  4. Alon, N., Spencer, J.H. The Probabilistic Method, Wiley-Interscience, 1992.

    Google Scholar 

  5. Beck, J. Irregularities of distribution, I, Acta Math. 159 (1987), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  6. Beck, J., Chen, W.W.L. Irregularities of Distribution, Cambridge Tracts in Mathematics, 89, Cambridge University Press, 1987.

    Google Scholar 

  7. Beck, J., Fiala, T. “Integer-making” theorems, Discrete Applied Mathematics 3(1981), 1–8.

    Article  MATH  MathSciNet  Google Scholar 

  8. Beck, J., Sós, V.T. Discrepancy theory, in Handbook of Combinatorics, Chap. 26, eds., Graham, R.L., Grötschel, M., Lovász, L., North-Holland, 1995, pp. 1405–1446.

    Google Scholar 

  9. Chazelle, B. Lower bounds on the complexity of polytope range searching, J. Amer. Math. Soc. 2 (1989), 637–666.

    Article  MATH  MathSciNet  Google Scholar 

  10. Chazelle, B. Lower bounds for orthogonal range searching: II. The arithmetic model, J. ACM37 (1990), 439–463.

    Article  MATH  MathSciNet  Google Scholar 

  11. Chazelle, B. Cutting hyperplanes for divide-and-conquer, Disc. Comput. Geom. 9 (1993), 145–158.

    Article  MATH  MathSciNet  Google Scholar 

  12. Chazelle, B. An optimal convex hull algorithm in any fixed dimension, Disc. Comput. Geom. 10 (1993), 377–409.

    Article  MATH  MathSciNet  Google Scholar 

  13. Chazelle, B. Lower bounds for off-line range searching, Disc. Comput. Geom. 17 (1997), 53–65.

    Article  MATH  MathSciNet  Google Scholar 

  14. Chazelle, B. A spectral approach to lower bounds with applications to geometric searching, SIAM J. Comput. 27 (1998), 545–556.

    Article  MATH  MathSciNet  Google Scholar 

  15. Chazelle, B. The Discrepancy Method: Randomness and Complexity, Cambridge University Press, 2000.

    Google Scholar 

  16. Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in geometry, Combinatorica 10 (1990), 229–249.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chazelle, B., Lvov, A. A trace bound for the hereditary discrepancy, Proc. 16th Annual ACM Symp. Comput. Geom. (2000), 64–69. To appear in Disc. Comput. Geom.

    Google Scholar 

  18. Chazelle, B., Matoušek, J. On linear-time deterministic algorithms for optimization problems in fixed dimension, J. Algorithms 21 (1996), 579–597.

    Article  MATH  MathSciNet  Google Scholar 

  19. Clarkson, K.L. Linear programming in O(n * 3d/2 ) time, Inform. Process. Lett. 22 (1986), 21–24.

    Article  MathSciNet  Google Scholar 

  20. Clarkson, K.L. New applications of random sampling in computational geometry, Disc. Comput. Geom. 2 (1987), 195–222.

    Article  MATH  MathSciNet  Google Scholar 

  21. Clarkson, K.L. Las Vegas algorithms for linear and integer programming when the dimension is small, J. ACM 42 (1995), 488-499.

    Google Scholar 

  22. Davenport, H. Note on irregularities of distribution, Mathematika 3 (1956), 131–135.

    MATH  MathSciNet  Google Scholar 

  23. Dyer, M.E. On a multidimensional search technique and its application to the Euclidean one-centre problem, SIAM J. Comput. 15 (1986), 725–738.

    Article  MATH  MathSciNet  Google Scholar 

  24. Dyer, M.E., Frieze, A.M. A randomized algorithm for fixed-dimensional linear programming,tiMathematical Programming 44 (1989), 203–212.

    Google Scholar 

  25. Hammersley, J.M. Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci. 86 (1960), 844–874.

    Article  MATH  MathSciNet  Google Scholar 

  26. Haussler, D., Welzl, E. ∈-nets and simplex range queries, Disc. Comput. Geom. 2 (1987), 127–151.

    Article  MATH  MathSciNet  Google Scholar 

  27. Matoušek, J. Construction of ∈-nets, Disc. Comput. Geom. 5 (1990), 427–448.

    Article  MATH  Google Scholar 

  28. Matoušek, J. Geometric range searching, ACM Comput. Surv. 26 (1994), 421–461.

    Google Scholar 

  29. Matoušek, J. Approximations and optimal geometric divide-and-conquer, J. Comput. Syst. Sci. 50 (1995), 203–208.

    Article  Google Scholar 

  30. Matoušek, J. Derandomization in computational geometry, J. Algorithms 20 (1996), 545–580.

    Article  MATH  MathSciNet  Google Scholar 

  31. Matoušek, J. Geometric Discrepancy: An Illustrated Guide, Algorithms and Combinatorics, 18, Springer, 1999.

    Google Scholar 

  32. Megiddo, N. Linear-time algorithms for linear programming in R3 and related problems, SIAM J. Comput. 12 (1983), 759–776.

    Article  MATH  MathSciNet  Google Scholar 

  33. Megiddo, N. Linear programming in linear time when the dimension is fixed, J. ACM31 (1984), 114–127.

    Article  MATH  MathSciNet  Google Scholar 

  34. Montgomery, H.L. On irregularities of distribution, in Congress of Number Theory (Zarautz, 1984), Universidad del País Vasco, Bilbao, 1989, pp. 11–27.

    Google Scholar 

  35. Montgomery, H.L. Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, No. 84, Amer. Math. Soc., Providence, 1994.

    Google Scholar 

  36. Motwani, R., Raghavan, P. Randomized Algorithms, Cambridge University Press, 1995.

    Google Scholar 

  37. Niederreiter, H. Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF, SIAM, Philadelphia, PA, 1992.

    MATH  Google Scholar 

  38. Pach, J., Agarwal, P.K. Combinatorial Geometry, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., 1995.

    Google Scholar 

  39. Roth, K.F. On irregularities of distribution, Mathematika 1 (1954), 73–79.

    Article  MATH  MathSciNet  Google Scholar 

  40. Roth, K.F. Remarkc oncerning integer sequences, Acta Arithmetica 9 (1964), 257–260.

    MATH  MathSciNet  Google Scholar 

  41. Roth, K.F. Remarkc oncerning integer sequences, Acta Arithmetica 9 (1964), 257–260.

    MATH  MathSciNet  Google Scholar 

  42. Schmidt, W.M. Irregularities of distribution, VII, Acta Arithmetica 21 (1972), 45–50.

    MATH  MathSciNet  Google Scholar 

  43. Seidel, R. Small-dimensional linear programming and convex hulls made easy, Disc. Comput. Geom. 6 (1991), 423–434.

    Article  MATH  MathSciNet  Google Scholar 

  44. Sharir, M., Welzl, E. A combinatorial bound for linear programming and related problems, Proc. 9th Annual Symp. Theoret. Aspects Comput. Sci., LNCS, 577, Springer-Verlag, 1992, pp. 569–579.

    Google Scholar 

  45. Spencer, J. Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679–706.

    Article  MATH  MathSciNet  Google Scholar 

  46. Spencer, J. Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, 1987.

    Google Scholar 

  47. van der Corput, J.G. Verteilungsfunktionen I. Proc. Nederl. Akad. Wetensch. 38 (1935), 813–821.

    Google Scholar 

  48. van der Corput, J.G. Verteilungsfunktionen II. Proc. Nederl. Akad. Wetensch. 38 (1935), 1058–1066.

    Google Scholar 

  49. Vapnik, V.N., Chervonenkis, A.Ya. On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability and its Applications 16 (1971), 264–280.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chazelle, B. (2000). Irregularities of Distribution, Derandomization, and Complexity Theory. In: Kapoor, S., Prasad, S. (eds) FST TCS 2000: Foundations of Software Technology and Theoretical Computer Science. FSTTCS 2000. Lecture Notes in Computer Science, vol 1974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-44450-5_3

Download citation

  • DOI: https://doi.org/10.1007/3-540-44450-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41413-1

  • Online ISBN: 978-3-540-44450-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics